UNIX™ TIME-SHARING SYSTEM:

UNIX PROGRAMMER'S MANUAL

Seventh Edition, Volume 2A

January, 1979

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

UNIX Programmer’s Manual
Volume 2 — Supplementary Documents

Seventh Edition
January 10, 1979

This volume contains documents which supplement the information contained in Volunihé of
UNIXT Programmer’s Manual. The documentshere are grouped roughly into the areas of basics, editing,
language tools, document preparation, and system mainten&ucther generalinformation may be
found in the Bell System Technical Journal special issuanon, July-August, 1978.

Many of the documents cited within this volume as Bell Laboratories internal memora@daer
puting Science Technical Reports (CSTR) are also contained here.

These documents contain occasional localisms, typically references to other operating systems like
GCOSandIBM. In all cases, such references may be safely ignored by UNIX users.

General Works

1. 7th Edition UNIX — Summary.
A concise summary of the facilities available unx.

2. The UNIX Time-Sharing SystemD. M. Ritchie and K. Thompson.
The originaluNix paper, reprinted from CACM.

Getting Started

3. UNIX for Beginners — Second EditionB. W. Kernighan.
An introduction to the most basic use of the system.
4. A Tutorial Introduction to the UNIX Text EditorB. W. Kernighan.
An easy way to get started with the editor.
5. Advanced Editing on UNIX.B. W. Kernighan.
The next step.
6. An Introduction to the UNIX Shell.S. R. Bourne.
An introduction to the capabilities of the command interpreter, the shell.
7. Learn — Computer Aided Instruction on UNIXM. E. Lesk and B. W. Kernighan.

Describesa computer-aidednstruction program that walks new users through the basics of
files, the editor, and document preparation software.

Document Preparation

8. Typing Documents on the UNIX SystenM. E. Lesk.
Describes the basic use of the formatting toofdso describes “#ms”, a standardized
packageof formatting requests that can be used to lay out most documents (including those
in this volume).

TUNIX is a Trademark of Bell Laboratories.

10.

11.

12.

13.

2.

A System for Typesetting MathematicB. W. Kernighan and L. L. Cherry.
Describes EQN. an easy-to-learn language for doing high-quality mathematical typesetting,
TBL — A Program to Format TabledVl. E. Lesk.
A program to permit easy specification of tabulaaterial for typesetting. Again, easyto
learn and use.
Some Applications of Inverted Indexes on the UNIX Systévh.E. Lesk.
Describes,among other things, the program REFER which fills in bibliographic citations
from a data base automatically.
NROFF/TROFF User's Manuald. F. Ossanna.
The basic formatting program.

A TROFF Tutorial. B. W. Kernighan.
An introduction to TROFF for those who really want to know such things.

Programming

14.

15.

16.

17.

18.

The C Programming Language — Reference ManalM. Ritchie.
Official statementof the syntax and semantics of Ghould be supplemented Biyhe C
Programming LanguageB. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978, which
contains a tutorial introduction and many examples.

Lint, A C Program CheckerS. C. Johnson.
Checks C programs for syntax errors, type violations, portability problems, and a variety of
probable errors.

Make — A Program for Maintaining Computer Prograns.|. Feldman.
Indispensablaool for making sure that large programs are properly compiled with minimal
effort.

UNIX Programming. B. W. Kernighan and D. M. Ritchie.
Describes the programming interface to the operating system and the standard 1/O library.

A Tutorial Introduction to ADB. J. F. Maranzano and S. R. Bourne.
How to use the ADB debugger.

Supporting Tools and Languages

19.

20.

21.

22.

23.

24,

25.

YACC: Yet Another Compiler-CompilerS. C. Johnson.
Convertsa BNF specification of a language and semantic actions written in C into a com-
piler for the language.
LEX — A Lexical Analyzer GeneratorM. E. LeskandE. Schmidt.
Creates a recognizer for a set of regular expressions; each regular expresdienfatan
lowed by arbitrary C code which will be executed when the regular expression is found.
A Portable Fortran 77 CompilerS. I. Feldman and P. J. Weinberger.
The first Fortran 77 compiler, and still one of the best.
Ratfor — A Preprocessor for a Rational Fortrdh. W. Kernighan.
Converts a Fortran with C-like control structures and cosmetics into real, ugly Fortran.
The M4 Macro ProcessoB. W. Kernighan and D. M. Ritchie.
M4 is a macro processor useful as a front end for C, Ratfor, Cobol, and in its own right.
SED — A Non-interactive Text EditorL. E. McMahon.
A variant of the editor for processing large inputs.
AWK — A Pattern Scanning and Processing Langua@geV. Aho, B. W. Kernighan and

P. J. Weinberger.
Makes it easy to specify many data transformation and selection operations.

-3-

26. DC — An Interactive Desk CalculatoRR. H. Morris and L. L. Cherry.
A super HP calculator, if you don't need floating point.

27. BC — An Arbitrary Precision Desk-Calculator Languade.L. Cherry and R. H. Morris.
A front end for DC that provides infix notation, control flow, and built-in functions.

28. UNIX Assembler Reference ManuaD. M. Ritchie.
The ultimate dead language.

Implementation, Maintenance, and Miscellaneous

29. Setting Up UNIX — Seventh EditionC. B. Haley and D. M. Ritchie.
How to configure and get your system running.

30. Regenerating System Softwar€. B. Haley and D. M. Ritchie.
What do do when you have to change things.

31. UNIX Implementation. K. Thompson.
How the system actually works inside.

32. The UNIX I/O System.D. M. Ritchie.
How the 1/O system really works.

33. A Tour Through the UNIX C CompilerD. M. Ritchie.
How the PDP-11 compiler works inside.

34. A Tour Through the Portable C Compile®. C. Johnson.
How the portable C compiler works inside.

35. A Dial-Up Network of UNIX Systems.D. A. Nowitz and M. E. Lesk.
Describes UUCP, a program for communicating files between UNIX systems.

36. UUCP Implementation DescriptiorD. A. Nowitz.
How UUCP works, and how to administer it.

37. On the Security of UNIX.D. M. Ritchie.
Hints on how to break UNIX, and how to avoid doing so.

38. Password Security: A Case HistoriR. H. Morris and K. Thompson.
How the bad guys used to be able to break the password algorithm, and why they can't
now, at least not so easily.

7th Edition UNIX — Summary

September 6, 1978

Bell Laboratories
Murray Hill, New Jersey 07974

A. What’'s new: highlights of the 7th edition UNIXT System

Aimed at larger systems. Devices are addressabie 2%t bytes, files to b bytes. 128Kmemory
(separate instruction and data space) is needed for some utilities.

Portability. Codeof the operating system and most utilities has been extensively revised to minimize
its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object lével.
Fortran structurer, STRUCT, converts old, ugly Fortran into RATFORyuxtureddialect usablewith
F77.

Shell. Completelynew SH programsupports string variables, trap handling, structured programming,
user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standardNROFF (for terminals) is now
highly compatiblewith TROFF. MS macro package provides canned commands for many common for-
matting and layousituations. TBL provides an easy to learn language for preparing complicated tabular
material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED streameditor does multiple editing functions in parallel on a data stream of
indefinitelength. AWK report generator does free-field pattern selection and arithmetic operations.

Program development. MAKE controls re-creation of complicated software, arranging for minimal
recompilation.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instardidata
spaces, floating point, etc.

C language. The languagenow supportsdefinable data types, generalized initialization, block structure,
long integers,unions, explicit type conversions.The LINT verifier does strong type checking and detec-
tion of probable errors and portability problems even across separately compiled functions.

Lexical analyzer generator. LEX converts specification of regular expressi@m semanticactions
into a recognizing subroutineAnalogousto YACC.

Graphics. Simple graph-drawingutility, graphic subroutines, and generalized plotting filters adapted to
various devices are now standard.

Standard input-output package. Highly efficient buffered stream 1/O is integrated with formatted
input and output.

Other. The operating system and utilities have been enhanced andofreesirictionsin many other
ways too numerous to relate.

T UNIX is a Trademark of Bell Laboratories.

B. Hardware

The 7th editionUNIX operating system runs on a DEC PDP-11/45 or 11/70* with at least the fol-
lowing equipment:

128K to 2M words of managed memory; parity not used.
disk: RP03, RP04, RP06, RK05 (more than 1 RK05) or equivalent.
console typewriter.
clock: KW11-L or KW11-P.
The following equipment is strongly recommended:
communications controller such as DL11 or DH11.
full duplex 96-character ASCII terminals.
9-track tape or extra disk for system backup.

The system is normally distributed on 9-track tagdie minimum memory and disk spacespecifiedis
enough to run and maintaisNIX. More will be neededto keepall source on line, or to handle a large
number of users, big data bases, diversified complements of devices, or large profnamssident
code occupies 12-20K words depending on configuration; system data occupies 10-28K words.

There is no commitment to provide 7th editioNIX on PDP-11/34, 11/40 and 11/60 hardware.

C. Software

Most of the programs available aslIX commands are listedSource code and printed manuals
are distributed for all of the listed software except gamfmost all of the code is written in CCom-
mands are self-containedand do not require extra setup information, unless specifically noted as
“interactive.” Interactive programscan be made to run from a prepared script simply by redirecting
input. Most programsintendedfor interactive use (e.g., the editor) allow for an escape to command
level (the Shell). Most file processing commands can also go from standard input to standard output
(“filters™). The piping facility of the Shell may be used to connect such fittieestly to the input or
output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, a machine language assewhaler
compiler for the programming language C—enough software to write and run new applications and to
maintain or modifyUNIX itself.

1.1. Operating System

O UNIX The basic resident code on which everything disgends. Supportsthe systemcalls,
and maintains the file systemA generaldescriptionof UNIX design philosophy and
systemfacilities appeared in the Communications of the ACM, July, 19A4more
extensive survey is in the Bell System Technical Jouaraluly-August1978. Capa-
bilities include:

O Reentrant code for user processes.

O Separate instruction and data spaces.

O “Group” access permissions for cooperatipeojects, with overlapping member-
ships.

O Alarm-clock timeouts.

O Timer-interrupt sampling and interprocess monitoring for debugging and measure-
ment.

*PDP is a Trademark of Digital Equipment Corporation.

-3-

O Multiplexed I/O for machine-to-machine communication.

o DEVICES All 1/O is logically synchronous.l/O devices are simply files in the file systefor-
mally, invisible buffering makes all physical recatiuctureand devicecharacteristics
transparent and exploits the hardware’s ability tooderlapped/O. Unbufferedphy-
sical record 1/O is available for unusual applicatiori3tivers for thesedevicesare
available; others can be easily written:

O Asynchronousnterfaces:.DH11, DL11. Support for most common ASCII terminals.
O Synchronous interface: DP11.

O Automatic calling unit interface: DN11.

O Line printer: LP11.

O Magnetic tape: TU10 and TU16.

O DECtape: TC11.

O Fixed head disk: RS11, RS03 and RS04.

O Pack type disk: RP03, RP04, RP06; minimum-latency seek scheduling.

O Cartridge-type disk: RK05, one or more physical devices per logical device.
O Null device.

O Physical memory of PDP-11, or mapped memory in resident system.

O Phototypesetter: Graphic Systems System/1 through DR11C.

O BOOT Procedures to geINIX started.

O MKCONF Tailor device-dependent system code to hardware configurafisndistributed, UNIX
can be brought up directly on any acceptable CPU with any acceptable disk, any
sufficient amount of core, and either cloc®ther changes, such as optiragkignment
of directories to devices, inclusion of floating point simulator, or installation of device
names in file system, can then be made at leisure.

1.2. User Access Control

O LOGIN Sign on as a new user.
O Verify password and establish user’s individual and group (project) identity.
O Adapt to characteristics of terminal.
O Establish working directory.
O Announce presence of mail (from MAIL).
O Publish message of the day.
O Execute user-specified profile.
O Start command interpreter or other initial program.

o PASSWD Change a password.
O User can change his own password.
O Passwords are kept encrypted for security.

o NEWGRP Change working group (projectProtects against unauthorized changes to projects.
1.3. Terminal Handling

O TABS Set tab stops appropriately for specified terminal type.

OoSTTY Set up options for optimal control of a termindh so far as they are deducible from
the input, these options are set automatically by LOGIN.
O Half vs. full duplex.
O Carriage return+line feed vs. newline.
O Interpretation of tabs.
O Parity.

-4 -

O Mapping of upper case to lower.
O Raw vs. edited input.
O Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

o CAT

oCP

OLPR
o CMP
O TAIL

O SPLIT

o DD

O SUM

Concatenatene or more files onto standard outpuParticularly usedfor unadorned
printing, for insertingdatainto a pipeline, and for buffering output that comes in dribs
anddrabs. Works on any file regardless of contents.

Copy one file to another, or a s#tfiles to a directory. Works on any file regardless
of contents.

Print files with title, date, and page number on every page.
O Multicolumn output.
O Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.
Compare two files and report if different.

Print lastn lines of input
O May print lastn characters, or from lines or characters to end.

Split a large file into more manageable piec&3ccasionally necessary for editing
(ED).

Physical file format translator,for exchanging data with foreign systems, especially
IBM 370’s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

ORM

O LN
oMV

0 CHMOD
0 CHOWN
0 CHGRP
0 MKDIR
0 RMDIR
oCD

0O FIND

Remove a file.Only the name goes away if any other names are linked to the file.
O Step through a directory deleting files interactively.
O Delete entire directory hierarchies.

“Link” another name (alias) to an existing file.

Move a file or files.Used for renaming files.

Change permissions on one or more fil&xecutable by files’ owner.
Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.
O Criteria include:

name matches a given pattern,

creation date in given range,

date of last use in given range,

given permissions,

given owner,

given special file characteristics,

boolean combinations of above.

-5-

O Any directory may be considered to be the root.
O Perform specified command on each file found.

1.6. Running of Programs

0O SH

O TEST

O EXPR

o WAIT
o READ
0 ECHO

O SLEEP
O NOHUP
O NICE

O KILL

0 CRON

OAT
o TEE

The Shell, or command language interpreter.
O Supply arguments to and run any executable program.
O Redirect standard input, standard output, and standard error files.
O Pipes: simultaneousxecutionwith output of one process connected to the input of
another.
O Compose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.
O Initiate background processes.
O Perform Shell programs, i.e., command scripts with substitutable arguments.
O Construct argument lists from all file names satisfying specified patterns.
O Take special action on traps and interrupts.
O User-settable search path for finding commands.
O Executes user-settable profile upon login.
O Optionally announces presence of mail as it arrives.
O Provides variables and parameters with default setting.

Tests for use in Shell conditionals.

O String comparison.

O File nature and accessibility.

O Boolean combinations of the above.

String computations for calculating command arguments.
O Integer arithmetic
O Pattern matching

Wait for termination of asynchronously running processes.
Read a line from terminal, for interactive Shell procedure.

Print remainder of command lineUseful for diagnostics or prompts in Shell pro-
grams, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.
Run a command in low (or high) priority.

Terminate named processes.

Schedule regular actions at specified times.

O Actions are arbitrary programs.

OTimes are conjunctions of month, day of month, daywekk, hour and minute.
Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

oLS

O FILE

O DATE

o DF

o DU

0 QUOT
0 WHO

oPS

O IOSTAT

oTTY
o PWD

List the names of one, several, or all files in one or more directories.

O Alphabetic or temporal sorting, up or down.

O Optional information: size,owner,group, date last modified, date last accessed, per-
missions, i-node number.

Try to determine what kind of information is in a file by consulting the file system
index and by reading the file itself.

Print today’s date and timeHas considerable knowledge of calendric and horological
peculiarities.
O May setUNIX’s idea of date and time.

Report amount of free space on file system devices.
Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who's on the system.
O List of presently logged in users, ports and times on.
O Optional history of all logins and logouts.

Report on active processes.

O List your own or everybody’s processes.

O Tell what commands are being executed.

O Optional status information:stateand scheduling info, priority, attached terminal,
what it's waiting for, size.

Print statistics about system 1/O activity.
Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

O MOUNT

O UMOUNT

O MKFS
O MKNOD

oTP
o TAR

o DUMP

Attach a device containing a file system to the tree of directof¥stectsagainst
nonsense arrangements.

Remove the file system contained on a device from the tree of directéesects
against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entrigr a specialfile. Specialfiles are physicaldevices,
virtual devices, physical memory, etc.

Manage file archives on magnetic tape or DECtap&R is newer.
O Collect files into an archive.

O Update DECtape archive by date.

O Replace or delete DECtape files.

O Print table of contents.

O Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or indiscrim-
inately.

-7-

0O RESTOR Restore a dumped file system, or selectively retrieve parts thereof.

O SuU Temporarily become the super user withth# rights and privilegesthereof. Requires
a password.

0 DCHECK

O ICHECK

0 NCHECK Check consistency of file system.
O Print gross statisticsnumber of files, number of directories, number of special files,
space used, space free.
O Report duplicate use of space.
O Retrieve lost space.
O Report inaccessible files.
O Check consistency of directories.
O List names of all files.

O CLRI Peremptorilyexpunge a file and its space from a file systdsised to repair damaged
file systems.
O SYNC Force all outstanding 1/0O on the system to completibised to shut down gracefully.

1.9. Accounting
The timing information on which the reports are based can be manually cleared or shut off completely.

oAC Publish cumulative connect time report.
O Connect time by user or by day.
O For all users or for selected users.

O SA Publish Shell accounting reporGives usage information on each command executed.
O Number of times used.
O Total system time, user time and elapsed time.
O Optional averages and percentages.
O Sorting on various fields.

1.10. Communication

O MAIL Mail a messageo one or more users.Also used to read and dispose of incoming
mail. The presence of mail is announced by LOGIN and optionally by SH.
O Each message can be disposed of individually.
O Messages can be saved in files or forwarded.

O CALENDAR Automatic reminder service for events of today and tomorrow.

0 WRITE Establish direct terminal communication with another user.
O WALL Write to all users.

O MESG Inhibit receipt of messages from WRITE and WALL.

oCuU Call up another time-sharing system.

O Transparent interface to remote machine.

O File transmission.

O Take remote input from local file or put remote output into local file.
O Remote system need not billX.

o UUCP UNIX to UNIX copy.

-8-

O Automatic queuing until line becomes available and remote machine is up.

O Copy between two remote machines.
O Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section 2.

OAR

O AS

O Library

O ADB

Maintain archivesand libraries. Combines several files into one for housekeeping
efficiency.

O Create new archive.

O Update archive by date.

O Replace or delete files.

O Print table of contents.

O Retrieve from archive.

Assembler. Similar to PAL-11, but different in detail.
O Creates object program consisting of
code, possibly read-only,
initialized data or read-write code,
uninitialized data.
O Relocatable object code is directly executable without further transformation.
O Object code normally includes a symbol table.
O Multiple source files.
O Local labels.
O Conditional assembly.
O “Conditional jump” instructions become branches or branches plus jumps depend-
ing on distance.

The basic run-time libraryThese routines are used freely by all software.

O Buffered character-by-character /0.

O Formatted input and output conversion (SCANF and PRINTF) for standard input and
output, files, in-memory conversion.

O Storage allocator.

O Time conversions.

O Number conversions.

O Password encryption.

O Quicksort.

O Random number generator.

O Mathematical function library, including trigonometric functions and inverses,
exponential, logarithm, square root, bessel functions.

Interactivedebugger.
O Postmortem dumping.
O Examination of arbitrary files, with no limit on size.
O Interactive breakpoint debugging with the debugger as a separate process.
O Symbolic reference to local and global variables.
O Stack trace for C programs.
O Output formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions
O Patching.

-9-

O Searching for integer, character, or floating patterns.
O Handles separated instruction and data space.

oOD Dump any file. Output options include any combination of octal or decimal by words,
octal by bytes, ASCII, opcodes, hexadecimal.
O Range of dumping is controllable.

oLD Link edit. Combine relocatable object filednsert required routines from specified
libraries.
O Resulting code may be sharable.
O Resulting code may have separate instruction and data spaces.

O LORDER Places obiject file names in proper order for loading, so thatdi@psendingon others
come after them.

o NM Print the namelist (symbol tablef an objectprogram. Providescontrol over the style
and order of names that are printed.

O SIZE Report the core requirements of one or more object files.

O STRIP Remove the relocation and symbol table information from an object file to save space.

o TIME Run a command and report timing information on it.

O PROF Constructa profile of time spent per routine from statistics gathered by time-sampling

the execution of a programJsesfloating point.
O Subroutine call frequency and average times for C programs.

O MAKE Controls creation of large programslses a control file specifying source file depen-
denciesto make new version; usestime last changed to deduce minimum amount of
work necessary.

O Knows about CC, YACC, LEX, etc.

1.12. UNIX Programmer’s Manual

O Manual Machine-readable version of thiNIX Programmer’s Manual.
O System overview.
O All commands.
O All system calls.
O All subroutines in C and assembler libraries.
O All devices and other special files.
O Formats of file system and kinds of files known to system software.
O Boot and maintenance procedures.

O MAN Print specified manual section on your terminal.
1.13. Computer-Aided Instruction
O LEARN A program for interpreting CAI scriptglus scriptsfor learningaboutUNIX by using
I(t).Scripts for basic files and commands, editor, advanced filesc@mdhands,EQN,
MS macros, C programming language.

2. Languages

2.1. The C Language

oCC

O LINT

oCB

2.2. Fortran

oF77

O RATFOR

O STRUCT

-10 -

Compile and/or link edit programa the C language. The UNIX operating system,

most of the subsystems and C itself are written in [&r a full description of C, read

The C Programming LanguagBrian W. Kernighan and Dennis NRitchie, Prentice-

Hall, 1978.

O General purpose language designed for structured programming.

O Data types include character, integer, float, double, pointers typal, functions
returning above types, arrays of all types, structures and unions of all types.

O Operationsintended to give machine-independent control of full machine facility,
including to-memory operations and pointer arithmetic.

O Macro preprocessor for parameterized code and inclusion of standard files.

O All procedures recursive, with parameters by value.

O Machine-independent pointer manipulation.

O Object code uses full addressing capability of the PDP-11.

O Runtime library gives access to all system facilities.

O Definable data types.

O Block structure

Verifier for C programs.Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.
O Full cross-module checking of separately compiled programs.

A beautifier for C programsDoes proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.

O Compatible with C and supporting tools at object level.

O Optional source compatibility with Fortran 66.

O Free format source.

O Optional subscript-range checking, detection of uninitialized variables.

O All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byieal; 8- and 16-byte
complex.

Ratfor adds rational control structurdaaC to Fortran.

O Compound statements.

O If-else, do, for, while, repeat-until, break, next statements.
O Symbolic constants.

O File insertion.

O Free format source

O Translation of relationals like, >=.

O Produces genuine Fortran to carry away.

O May be used with F77.

Convertsordinary ugly Fortran into structured Fortran (i.e., Ratfor), using statement
grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

O BAS

An interactiveinterpreter,similar in style to BASIC. Interpretunnumberedstatements
immediately, numbered statements upon ‘run’.

oDC

oBC

-11 -

O Statements include:
comment,
dump,
for...next,
goto,
if...else...fi,
list,
print,
prompt,
return,
run,
save.
O All calculations double precision.
O Recursive function defining and calling.
O Builtin functions include log, exp, sin, cos, atn, int, sgr, abs, rnd.
O Escape to ED for complex program editing.

Interactiveprogrammable desk calculatoHas named storage locations as well as con-
ventional stack for holding integers or programs.
O Unlimited precision decimal arithmetic.
O Appropriate treatment of decimal fractions.
O Arbitrary input and output radices, in particular binary, octal, decimal and hexade-
cimal.
O Reverse Polish operators:
+—*/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.

O All the capabilities of DC with a high-level syntax.

O Arrays and recursive functions.

O Immediate evaluation of expressions and evaluation of functions upon call.
O Arbitrary precision elementary functiongxp, sin, cos, atan.

O Go-to-less programming.

2.4. Macroprocessing

0o M4

A general purpose macroprocessor.

O Stream-oriented, recognizes macros anywhere in text.

O Syntax fits with functional syntax of most higher-level languages.
O Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

o YACC

O LEX

An LR(1)-basedcompiler writing system. During execution of resulting parsers, arbi-
trary C functions may be called to do code generation or semantic actions.

O BNF syntax specifications.

O Precedence relations.

O Accepts formally ambiguous grammars with non-BNF resolution rules.

Generatorof lexical analyzers. Arbitrary C functions may be called upon isolation of
each lexical token.

-12 -

O Full regular expression, plus left and right context dependence.
O Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

o ED

oPTX
O SPELL

0 LOOK
oTYPO
o0 CRYPT

Interactive context editorRandom access to all lines of a file.

OFind lines by number or patterrPatterns may includespecifiedcharactersdon’t
care characters, choices among characters, repetitions of these constructs, beginning
of line, end of line.

O Add, delete, change, copy, move or join lines.

O Permute or split contents of a line.

O Replace one or all instances of a pattern within a line.

O Combine or split files.

O Escape to Shell (command language) during editing.

O Do any of above operations on every pattern-selected line in a given range.

O Optional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word list.
O 25,000-word list includes proper names.

O Handles common prefixes and suffixes.

O Collects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.
Look for spelling errors by a statistical technique; not limited to English.

Encrypt and decrypt files for security.

3.2. Document Formatting

O ROFF

O TROFF
O NROFF

A typesettingprogramfor terminals. Easyfor nontechnical people to learn, and good
for simple documents.nput consists of data lines intermixed with control lines, such
as

ROFF is deemed to be obsolete;
it is intended only for casual use.
O Justification of either or both margins.
O Automatic hyphenation.
O Generalized running heads and feet, with even-odd page capability, numbering, etc.
O Definable macros for frequently used control sequences (no substitutable arguments).
O Al 4 margins and page size dynamically adjustable.
O Hanging indents and one-line indents.
O Absolute and relative parameter settings.
O Optional legal-style numbering of output lines.
O Multiple file capability.
O Not usable as a filter.

Advanced typesetting. TROFF drives a Graphic Systems phototypesetter; NROFF
drives ascii terminals of all typesThis summarywas typesetusing TROFF. TROFF

and NROFF style is similar to ROFF, but they are capable of much more elaborate
feats of formatting, when appropriately programmd@&iROFF and NROFF accept the

13-

same input language.

O All ROFF capabilities available or definable.

O Completely definable page format keyed to dynamically planted “interrupts” at
specified lines.

O Maintains severalseparately definable typesetting environments (e.g., one for body
text, one for footnotes, and one for unusually elaborate headings).

O Arbitrary number of output pools can be combined at will.

O Macros with substitutable arguments, and macros invocable in mid-line.

O Computation and printing of numerical quantities.

O Conditional execution of macros.

O Tabular layout facility.

O Positions expressible in inches, centimeters, ems, points, magtite®r arithmetic
combinations thereof.

O Access to character-width computation for unusually difficult layout problems.

O Overstrikes, built-up brackets, horizontal and vertical line drawing.

O Dynamic relative or absolute positioning and size selection, globally or at the char-
acter level.

O Can exploit the characteristicof the terminal being used, for approximating special
characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultaneously) in 15
sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line deéatoughthe post-
processor COL.

High programmingskill is required to exploit the formatting capabilities of TROFF and NROFF,
althoughunskilled personnelcan easily be trained to enter documents according to canned formats such
as thoseprovidedby MS, below. TROFFandEQN are essentiallyidentical to NROFF and NEQN so it

is usually possible to define interchangeable formats to produce approximate proof copy on terminals
before actualtypesetting. The preprocessors MS, TBL, and REFER are fully compatible with TROFF
and NROFF.

o MS A standardized manuscript layout package for use with NROFF/TRARks docu-
ment was formatted with MS.
O Page numbers and draft dates.
O Automatically numbered subheads.
O Footnotes.
O Single or double column.
O Paragraphing, display and indentation.
O Numbered equations.

O EQN A mathematical typesetting preprocessor for TROFFanslates easily readable formu-
las, either in-line or displayed, into detailed typesetting instructidf@mulas are
written in a style like this:

sigma sup 2="1 over N sum from i=1 to N (x sub- x bar) sup 2

which produces:
2 — 1 s =v)2
0% = 3 (6=X)
i=1

O Automatic calculation of size changes for subscripts, sub-subscripts, etc.
O Full vocabulary of Greek letters and special symbols, such as ‘gamma’, ‘GAMMA'’,
‘integral’.

0 NEQN

O TBL

O REFER

oTC

0O GREEK

O COL
0 DEROFF
0 CHECKEQ

- 14 -

O Automatic calculation of large bracket sizes.

O Vertical “piling” of formulae for matrices, conditional alternatives, etc.
O Integrals, sums, etc., with arbitrarily complex limits.

O Diacriticals: dots, double dots, hats, bars, etc.

O Easily learned by nonprogrammers and mathematical typists.

A versionof EQN for NROFF; accepts the same input languaBeepares formulas
for display on any terminal that NROFF knows about, geample,those basedon
Diablo printing mechanism.

O Same facilities as EQN within graphical capability of terminal.

A preprocessofor NROFF/TROFF that translates simple descriptions of table layouts

and contents into detailed typesetting instructions.

O Computes column widths.

O Handles left- and right-justified columns, centeosmibmnsand decimal-pointalign-
ment.

O Places column titles.

O Table entries can be text, which is adjusted to fit.

O Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
O References may be printed in any style, as they occur or collected at the end.
O May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scbiseful for checking
TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-46d,0n
Tektronix 4014.

O Gives half-line forward and reverse motions.

O Approximates Greek letters and other special characters by overstriking.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

Check document for possible errors in EQN usage.

4. Information Handling

O SORT

0 TSORT
0 UNIQ

OTR

o DIFF

Sort or merge ASCII files line-by-lineNo limit on input size.

O Sort up or down.

O Sort lexicographically or on numeric key.

O Multiple keys located by delimiters or by character position.
O May sort upper case together with lower into dictionary order.
O Optionally suppress duplicate data.

Topological sort — converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
O Publish lines that were originally unique, duplicated, or both.
O May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
O May coalesce selected repeated characters.
O May delete selected characters.

Reportline changes, additions and deletions necessary to bring two files into agree-
ment.

o COMM

0 JOIN
O GREP

O LOOK
oWC
o SED

O AWK

5. Graphics

- 15 -

O May produce an editor script to convert one file into another.
O A variant compares two new versions against one old one.

Identify common lines in two sorted filesOutput in up to 3 columns shows lines
present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
O May print all lines that fail to match.

O May print count of hits.

O May print first hit in each file.

Binary search in sorted file for lines with specified prefix.
Count the lines, “words” (blank-separated strings) and characters in a file.

Stream-orientedersionof ED. Canperform a sequence of editing operations on each
line of an input stream of unbounded length.

O Lines may be selected by address or range of addresses.

O Control flow and conditional testing.

O Multiple output streams.

O Multi-line capability.

Pattern scanning and processing languaearches input for patternand performs

actions on each line of input that satisfies the pattern.

OPatterns include regular expressions, arithmetind lexicographic conditions,
boolean combinations and ranges of these.

O Data treated as string or numeric as appropriate.

O Can break input into fields; fields are variables.

O Variables and arrays (with non-numeric subscripts).

O Full set of arithmetic operators and control flow.

O Multiple output streams to files and pipes.

O Output can be formatted as desired.

O Multi-line capabilities.

The programs in this section are predominantly intended for use with Tektronix 4014 storage scopes.

O GRAPH

O SPLINE
O PLOT

Prepares a graph of a set of input numbers.

O Input scaled to fit standard plotting area.

O Abscissae may be supplied automatically.

O Graph may be labeled.

O Control over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programarmus
terminals. Filters provided for 4014, DASI terminals, Versatec printer/plotter.

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else

0 BACKGAMMON

O CHESS

A player of modest accomplishment.

Plays good class D chess.

- 16 -

0O CHECKERS Ditto, for checkers.

o BCD Converts ascii to card-image form.

o PPT Converts ascii to paper tape form.

oBJ A blackjack dealer.

o CUBIC An accomplished player ofx4x4 tic-tac-toe.

O MAZE Constructs random mazes for you to solve.
o MOO A fascinating number-guessing game.

o CAL Print a calendar of specified month and year.

O BANNER Print output in huge letters.
O CHING Thel Ching. Place your own interpretation on the output.

O FORTUNE Presents a random fortune cookie on each invocalidmited jar of cookies included.

O UNITS Convert amounts between different scales of measurenkerdws hundreds ofinits.
For example, how many km/sec is a parsec/megayear?

oTTT A tic-tac-toe program that learndt never makes the same mistake twice.

0 ARITHMETIC

Speed and accuracy test for number facts.
o FACTOR Factor large integers.
o QuIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.
o WUMP Hunt the wumpus, thrilling search in a dangerous cave.
O REVERSI A two person board game, isomorphic to Othéllo
0 HANGMAN Word-guessinggame. Uses the dictionary supplied with SPELL.

o FISH Children’s card-guessing game.

The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating system for the larger
Digital Equipment CorporatiorDP-11 and the Interdata 8/32 computers. offers a
number of features seldom found even in larger operating systems, including

[A hierarchical file system incorporating demountable volumes,
ii Compatible file, device, and inter-process /O,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

% Over 100 subsystems including a dozen languages,

Vi High degree of portability.

This paper discusses the nature and implementation of the file system and of the user
command interface.

1. INTRODUCTION

There have been four versions of thax time-sharingsystem. The earliest (circad969-70)ran
on the DigitalEquipmentCorporationPDR-7 and -9 computersThe second version ran on the unpro-
tectedPbP-11/20 computer. The third incorporated multiprogramming and ram the PDP-11/34, /40,
/45, 160, and /70 computers; it is the one describetid@previouslypublishedversionof this paper,and
is also the most widely used toda¥his paper describes only the fourth, current systemrtimston the
pPDP-11/70 andthe Interdata8/32 computers.In fact, the differences among the various systems is rather
small; most of the revisions made to the originally published version of this pamfrom thosecon-
cerned with style, had to do with details of the implementation of the file system.

SincePDP-11 UNIX becameoperationalin February, 1971, over 600 installations have been put into
service. Most of them are engagedn applications such as computer science education, the preparation
and formatting of documents and other textual material, the collection and processingbté data
from various switching machines within the Bell Systemd recordingand checkingtelephoneservice
orders. Our own installation is used mainly for research in operating systems, languages, computer net-
works, and other topics in computer science, and also for document preparation.

Perhaps the most important achievementnk is to demonstrate that a powerful operating sys-
tem for interactive use need not be expensive either in equipmenthumaneffort: it can runon
hardwarecosting as little as $40,000,and less than two man-years were spent on the main system
software. We hope, however, that users find that the most important characteristics of theagstem
simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs availablesnixdare

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permis§ibis is a revisedversionof an
article that appeared in Communications of sber, 17, No. 7 (July 1974), pp. 365-375That article was a revised
version of a paper presented at thaeurthacm Symposium on Operating Systems Principles, Thomas J. Watson
Research Center, Yorktown Heights, New York, October 15-17, 1973.

TUNIX is a Trademark of Bell Laboratories.

C compiler

Text editor based ogep!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting progf&ms

Dozens of languages including Fortran 77, Basic, Snebo),Algol 68, M6,TMG, Pascal

Thereis a host of maintenance, utility, recreation and novelty programs, all written locEfg.UNIX
usercommunity,which numbersin the thousands, has contributed many more programs and languages.
It is worth noting that the system is totally self-supportingll uNix software is maintained on the sys-
tem; likewise, this paper and all other documentthisissuewere generatecand formattedby the UNix

editor and text formatting programs.

[I. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Researohix system is installed is a 16-bit word (8-bit byte) com-
puter with 768K bytes of core memory; the system kernel occupies 90K bytes about equally divided
between code and data tablekhis system, however, includes a very large number of device drivers and
enjoys a generous allotment of space for I/O buffers and system tabigsjnzal systemcapableof
running the softwarementionedabovecan require as little as 96K bytes of core altogethérereare
even larger installations; see the description of rve/uNIX systemd'® for example. There are also
much smaller, though somewhat restricted, versions of the s§stem.

Our ownpPDP-11 has two 200-Mb moving-head disks for file system storage and swapiiege
are 20 variable-speed communications interfaces attached to 300- and 1200-baud data sets, and an addi-
tional 12 communication lines hard-wired to 9600-baud terminals and satellite complUen® are
also several 2400- and 4800-baud synchronous communication interfaces used for machine-to-machine
file transfer. Finally, there is a variety of miscellaneous devices including nine-track magneticatape,
line printer, a voice synthesizer, a phototypesetter, a digital switching network, and a chess machine.

The preponderance ofiix software is written in the abovemention8danguagé’. Early versions
of the operating system were written in assembly language, but during the suma®#3pft was
rewritten in C. The size of the new system was about one-third greater than that of th8id@. the
new system not only became much easier to understand and to modify but also included many func-
tional improvements, including multiprogramming and the ability to share reentrant code among several
user programs, we consider this increase in size quite acceptable.

1. THE FILE SYSTEM

The most important role of the system is to provide a file systerom thepoint of view of the
user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or binary
(object) programs. No particular structuring is expected by the systeinfile of text consists simply of
a string of characters, with lines demarcated by the newline char&iteary programsare sequences
of words as they will appear in core memory wlieaprogramstartsexecuting. A few userprograms
manipulate files with more structure; for example, the assembler generates, and the loader expects, an
objectfile in a particularformat. However,the structureof files is controlled by the programs that use
them, not by the system.

3.2 Directories

Directories provide the mapping between the names of dihebthe files themselvesand thus
induce a structure on the file system as a wh&lach user has a directory o own files; he may also
create subdirectoriesto contain groups of files conveniently treated togethek. directory behaves
exactly like an ordinary file except that it cannot be written on by unprivileged progsarttsgt the
systemcontrols the contentsof directories. However, anyone with appropriate permission may read a
directory just like any other file.

-3-

The systemmaintainsseveral directories for its own us@®ne of these is theoot directory. All
files in the system can be found by tracing a path through a ohainectoriesuntil the desiredfile is
reached. The starting point for such searcheoftentheroot. Other system directories contain all the
programs provided for general use; that is, all tbenmands As will be seen, however, it is by no
means necessary that a program reside in one of these directories for it to be executed.

Files are namedby sequencesf 14 or fewer characters.When the name of a file is specified to
the system, it may be in the form ofpath namewhich is a sequence of directory names separated by
slashes, 7, and ending in a file namelf the sequence begins with a slash, the search beyite
root directory. The namée/alpha/beta/gamma causes the system to search the root for directiqmiya,
then to searclalpha for beta, finally to findgamma in beta. gamma may be an ordinary file, a direc-
tory, or a special file.As a limiting case, the name ™frefers to the root itself.

A path name not starting with “/ causes the system to begin the search in the user’s current
directory. Thus, the namalpha/beta specifies the file namedukta in subdirectoryalpha of the current
directory. The simplest kind of name, for exampk#pha, refers to a file that itself is found in the
currentdirectory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly diffarees.
This feature is calledinking; a directory entry for a file is sometimes called a liffkhe UNIX system
differs from othersystemsn which linking is permitted in that all links to a file have equal stafidsat
is, a file does not exist within a particular directory; the directory entry for a file consists wieitsly
name and a pointer to the information actually describing the Tilus a file exists independently of
any directory entry, although in practice a file is made to disappear along with the last link to it.

Each directory always has at least two entrie¥he name in each directory refers to the
directory itself. Thusa program may read the current directory under the nanfiewithout knowing

its complete path nameThe name “..” by convention refers to the parent of the directoryinich it
appears, that is, to the directory in which it was created.

The directory structureis constrained to have the form of a rooted tré&ecept for the special
entries “.” and “ .."”, eachdirectory mustappearasan entry in exactly one other directory, which is
its parent. The reasonfor this is to simplify the writing of programs that visit subtrees of the directory
structure, and more important, to avoid the separation of portions didtachy. If arbitrarylinks to
directories were permitted, it would be quite difficult to detect when the last connection from the root to

a directory was severed.

3.3 Special files

Special files constitute the most unusual feature obithe file system. Each supported 1/0O dev-
ice is associatedvith at leastone suchfile. Special files are read and written just like ordinary disk
files, but requestdo reador write result in activation of the associated deviéa entry for each special
file resides in directorydev, although a link may be made to one of these files justraay to an ordi-
nary file. Thus, for example,to write on a magnetic tape one may write on the filev/mt. Special
files exist for eachcommunication line, each disk, each tape drive, and for physical main me®@éry.
course, the active disks and the memory special file are protected from indiscriminate access.

There is a threefold advantage in treating 1/0 devices this ilyand device 1/O are as similar
as possible; file and device names have the same syntax and meatimagaswogramexpectinga file
name as a parameter can be passed a device name; finally, special files are subject to the same protection
mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always storedtmsamedevice,it is not necessaryhat
the entire file system hierarchy reside on this devithere is amount system request with two argu-
ments: the name of an existing ordinary file, and the name of a special file whose associated storage
volume (e.g., a disk pack) should have the structure of an independent file system containing its own
directory hierarchy. The effect ofmount is to cause references to the heretofore ordinary file to refer
instead to the root directory of the file systemthe removablevolume. In effect, mount replaces a

-4 -

leaf of the hierarchytree (the ordinary file) by a whole new subtree (the hierarchy stored on the remov-
able volume). After the mount, there is virtually no distinction between files on the removable volume
and those in the permanent file system.our installation, for example, thwot directory residesn a
small partition of one of our disk drives, while tl¢her drive, which containsthe user’s files, is
mounted by the system initialization sequenée mountable file system is generated JKiting on its
correspondingspecialfile. A utility program is available to create an empty file system, or one may
simply copy an existing file system.

Thereis only one exception to the rule of identical treatment of files on different devimebnk
may exist between one file system hierarchy and anofhieis restriction is enforced sis toavoid the
elaborate bookkeeping that would otherwise be required to assure remadhal lioks wheneverthe
removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual feafaes.user of
the system is assigned a unique user identification nunWeen a file is createdt, is markedwith the
useriD of its owner. Also given for new files is a set @&&n protectionbits. Nine of thesespecify
independently read, write, and execute permission for the owner of the file, for other members of his
group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereaftep)user
of the currentuserto that of the creator of the file whenever the file is executed as a progrféis.
change inuseriD is effective only during the execution of the program that calls foflite set-usenp
feature provides for privileged programs that meg files inaccessibleio other users. For example,a
programmay keep an accounting file that should neither be read nor changed except by the program
itself. If the set-user® bit is on for the program, it may access the file although this access might be
forbidden to other programs invoked by tge&ven program’s user. Since the actual useriD of the
invoker of any program is always available, set-useprograms may take any measudssiredto
satisfy themselves as to their invoker's credentidlbis mechanism is used allow usersto execute
the carefully written commands that call privileged systmries. For example thereis a systementry
invokable only by the “super-user” (below) that creates an erdpgctory. As indicatedabove,direc-
tories are expected to have entries for'“and “..”. The command which createsdirectory is
ownedby the super-user and has the set-usebit set. After it checks its invoker’s authorization to
create the specified directory, it creates it and makes the entries’fand “ ..".

Because anyone may set the set-usdsit on one of his own files, this mechanism is generally
available without administrative interventiofzor example, this protection scheme easdivesthe Moo
accounting problem posed by “Aleph-nul”

The system recognizes one particular usgfthat of the “super-user”) as exempt from the usual
constraints on file access; thus (for example), programs may be written to dump and reload the file sys-
tem without unwanted interference from the protection system.

3.6 1/O calls

The system calls to do I/O are designed to eliminate the differences between the various devices
and styles of accessThere is no distinction between “random” and ‘“sequential” 1/0, noaiigy logi-
cal record size imposedby the system. The size of an ordinary file is determined by the number of
bytes written on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of 1/0, some of the basic calls are summarized below in an anonymous
languagethat will indicate the required parameters without getting into the underlying complexities.
Each call to the system may potentially result in an error return, vibiickimplicity is not represented
in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = oper(name, flag

wherename indicates the name of the fileAn arbitrary path name maye given. The flag argument

-5-

indicates whether the file is to be read, written, or “updated,” that is, read and written simultaneously.

The returned valuéilep is called afile descriptor It is a small integer used to identify the fite
subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, therecieaie system call that creates the
given file if it does not exist, or truncates it to zero length if it does exisdfe also opens the new file
for writing and, likeopen, returns a file descriptor.

The file systemmaintainsno locks visible to the user, nor is there any restriction on the number
of userswho may have a file open for reading or writinglthough it is possible for the contents of a
file to becomescrambledvhentwo userswrite on it simultaneously, in practice difficulties do not arise.
We take the view that locks are neither necessary nor sufficient, in our environment, to prevent interfer-
encebetweenusersof the samefile. They are unnecessary because we are not faced with large, single-
file data bases maintained by independent procesgwsy are insufficientbecausdocks inthe ordinary
sensewherebyone useris preventedrom writing on a file that another user is reading, cannot prevent
confusion when, for example, both users are editing a file withdéor that makesa copy of the file
being edited.

Thereare, however,sufficientinternalinterlocks to maintain the logical consistency of the file sys-
tem when two users engage simultaneously in activities such as verititng samefile, creatingfiles in
the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequeriftib meansthatif a particularbyte
in the file wasthe last byte written (or read), the next 1/O call implicitly refers to the immediately fol-
lowing byte. For each open file there is a pointer, maintained inside the system, that indicates the next
byte to be read or writtenlf n bytes are read or written, the pointer advances bytes.

Once a file is open, the following calls may be used:

n = read filep, buffer, coun}
n = write(filep, buffer, coun}

Up to count bytes are transmittedbetween the file specified Hylep and the byte array specified by
buffer. The returnedvalue n is the number of bytes actually transmittelth the write case,n is the

same ascount except under exceptional conditions, such as I/O errors or end of physical medium on
special files; in aead, however,n may without error bdessthancount. If the read pointer is so near

the end of the file that readingunt charactersvould causereading beyond the end, only sufficient
bytesare transmittedto reachthe end of the file; also, typewriter-like terminals never return more than
one line of input. When aread call returns withn equal to zerothe end of the file has been reached.

For disk files this occurs when the read pointer becomes tmtra current sizeof thefile. It is possi-

ble to generatean end-of-file from a terminal by use of an escape sequence that depends on the device
used.

Bytes written affect only those parts of a file implied by the position of the write pointehand
count; no other part of the file is changedf the last byte lies beyond the end of the file, the file is
made to grow as needed.

To do random (direct-access) I/O it is only necessary to nioe@&ead or write pointer to the
appropriate location in the file.

location = Iseekfilep, offset, basg

The pointer associatedlith filep is moved to a positionffset bytes from the beginning of the file, from
the current position of the pointer, or from thied of the file, dependingon base. offset may be nega-
tive. For somedevices(e.g., paper tape and terminals) seek calls are ignoftke actual offset from
the beginning of the file to which the pointer was moved is returnbmtation.

Thereare severaadditionalsystem entries having to do with I/O and with the file system that will
not be discussed. For example: closea file, get the status of a file, change the protection mode or the
owner of a file, create a directory, make a link to an existing file, delete a file.

-6 -

V. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contaihsa namefor the associatedile
and a pointer to the file itself. This pointer is an integer called th@umber (for index number) of the
file. Whenthefile is accessedits i-number is used as an index into a system tablei{ibig) stored in
a known part of the device on which the directoggides. The entry found thereby(the file’s i-node)
contains the description of the file:

[the user and grouj- of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of arppen or create system call is to turn the path name given by the user into an i-
number by searching the explicitly or implicitly named directori@nce a file is open, its device, i-
number, and read/write pointer are stored in a system table indexed by the file desttiptedby the

open or create. Thus, during a subsequentall to read or write the file, the descriptor may be easily
related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry ishabcentains
the name of the file and the i-node numbktaking a link to an existing file involves creatiaglirec-
tory entry with the new name, copying the i-number from the original file emtiyjncrementingthe
link-count field of the i-node. Removing (deleting) a file is done by decrementing the link-count of the
i-node specified by its directory entry and erasingdinectory entry. If the link-count dropsto 0, any
disk blocks in the file are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a nawihb&R-byteblocks logi-
cally addressed from 0 up to a limit that depends on the devVibere is space in the i-node of each
file for 13 device addresses.For nonspecialfiles, the first 10 device addresses point at the first 10
blocks of the file. If the file is largerthan 10 blocks, the 11 device address points to an indirect block
containingup to 128 addresses of additional blocks in the filgtill larger files use the twelfth device
address of the i-node to point to a double-indirect block naming 128 indirect blocks, each pointing to
128 blocks of the file.If required, the thirteenth device address ifriple-indirect block. Thus files
may conceptually grow to(10+128+128+128):512] bytes. Once opened, bytes numbered below 5120
can be readwith a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in
the range 70,656 to 8,459,264 require three accesses; bytes from there to the la(fe38ZjR01,088)
requirefour accesseslIn practice,a device cache mechanism (see below) proves effective in eliminating
most of the indirect fetches.

The foregoing discussion applies to ordinary filé¥hen an 1/O request imadeto a file whose
i-node indicates that it is special, the last 12 device address words are immateribg fastispecifies
an internaldevice namewhich is interpreted as a pair of numbers representing, respectively, a device
type and subdevicenumber. The device type indicates which system routine will deal with 1/O on that
device;the subdevicenumberselectsfor example,a disk drive attached to a particular controller or one
of several similar terminal interfaces.

In this environment, the implementation of timount system call (Section 3.4) is quite straight-
forward. mount maintains a system table whose argument is the i-number and device ntémaerdf-
nary file specified during theount, andwhosecorresponding value is the device name of the indicated
special file. This table is searched for each i-number/device pair that turns up while a path name is
being scanned during apen or create; if a matchis found, the i-number is replaced by the i-number
of the root directory and the device name is replaced by the table value.

To the user, both reading and writing of files appearesynchronousand unbuffered. That is,
immediately after return from aead call the data are available; conversedfter a write the user’s

-7-

workspacemay be reused. In fact, the systemmaintains a rather complicated buffering mechanism that
reduces greatly the number of I/O operations requicedccessa file. Supposea write call is made
specifying transmission of a single byt&#he system will search its buffers to see whether the affected
disk block currently residesn main memory; if not, it will be read in from the deviceThen the
affected byte is replaced in the buffer and an entry is made in a list of blobksamdtten. The return

from thewrite call may thentake place, although the actual I/O may not be completed until a later time.
Conversely, if a single byte is read, the system determines whether the secondary storage block in which
the byte is located is already in one of the system’s buffers; if so, the byte can be returned immediately.
If not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file, and asyn-
chronously pre-reads the next blockhis significantly reduces the running time of most programs while
adding little to system overhead.

A programthat readsor writes files in units of 512 bytes has an advantage over a program that
reads or writes a single byte at a time, but the gain is not immiersgnesmainly from the avoidance
of systemoverhead. If a programis used rarely or does no great volume of I/O, it may quite reasonably
read and write in units as small as it wishes.

The notion of the i-list is an unusual featureusix. In practice, this method of organizing the
file system has proved quite reliable and easy to deal Withthe system itself, onef its strengthss
the fact that eachfile has a short, unambiguous name related in a simple way to the protection, address-
ing, and otherinformation neededto accesshe file. It also permits a quite simple and rapid algorithm
for checking the consistency of a file system, for example, verification that the portions of each device
containing useful information and those free to be allocated are disjoint and together exhaust the space
on the device. This algorithm is independent of the directory hierarchy, because it need only scan the
linearly organizedi-list. At the sametime the notion of the i-list induces certain peculiarities not found
in other file system organizationdzor example, there is the question of who is to be charged for the
space a file occupies, because all directory entries for a file have equal &hanging the owneof a
file is unfair in general, for one user may create a &itjgther maylink to it, and the first user may
deletethe file. The first user is still the owner of the file, but it should be charged to the second user.
The simplest reasonably fair algorithm seems to be to spread the charges equally among us&ve who
links to a file. Many installations avoid the issue by not charging any fees at all.

V. PROCESSES AND IMAGES

An imageis a computer execution environmentt includes a memory image, general register
values, status of open files, current directory andlikee An imageis the currentstateof a pseudo-
computer.

A processis the execution of an image/hile the processor is executiiog behalf of a process,
the image must reside in main memory; during the execution of other processes it remains in main
memory unless the appearance of an active, higher-priority process forcdseisw@ppedout to the
disk.

The user-memory part of an image is divided into three logical segm&hé&sprogramtext seg-
mentbegins at location 0 in the virtual address spadaring execution, this segment is write-protected
and a single copy of it is shared among all processesutingthe sameprogram. At the first hardware
protection byte boundary above the program text segment in the virtual addeesbeginsa non-
shared, writable data segment, the size of which may be extended by a syste@tardilhg at the
highestaddress in the virtual address space is a stack segment, which automatically grows downward as
the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come into
existence only by use of tHerk system call:

processid = fork)

-8-

When fork is executed,the process splits into two independently executing proces$es. two
processesave independentopies of the original memory image, and share all open fil&éhe new
processes differ only in that one is considered the parent procesise parent, the returnqaf ocessid
actually identifies the child process and is never 0, while in the child, the returned value is always 0.

Becausehe values returned biprk in the parent and child process are distinguishable, each pro-
cess may determine whether it is the parent or child.

5.2 Pipes
Processes may communicate with related processes using thesystararead and write calls
that are used for file-system I/Qlhe call:
filep = pipe()

returns a file descriptdilep and creates an inter-process channel callpgh@ This channel, like other
open files, is passed from parent to child process iimthgeby thefork call. A read using a pipe file
descriptorwaits until another process writes using the file descriptor for the same pip¢his point,
data are passed between the images of the two procdssiker processneedknow that a pipe, rather
than an ordinary file, is involved.

Although inter-processommunication via pipes is a quite valuable tool (see Section 6.2), it is not
a completely general mechanism,becausethe pipe must be set up by a common ancestor of the
processes involved.

5.3 Execution of programs
Another major system primitive is invoked by

execute (filearg,, arg,, ... ,arg,)

which requestghe systemto read in and execute the program namediley passing it string arguments
arg,, arg,, ..., arg,. All the code and data in the process invokaxgcute is replaced from théile,

but open files, current directory, and inter-procedationshipsare unaltered. Only if the call fails, for
example becauskle could not be found or because its execute-permission bit was not set, does a return
take place from thexecute primitive; it resemblesa “jump” machine instruction rather than a subrou-

tine call.

5.4 Process synchronization
Another process control system call:

processid= wait (status)

causes its caller to suspend execution until one of its childesrcompletedexecution. Then wait
returns theprocessid of the terminated processin error return is taken ithe calling processhasno
descendantsCertain status from the child process is also available.

5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open filegeredllyobliteratesit. The parentis
notified through thevait primitive, andstatus is made available to itProcesses may also terminate as
a result of various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with the aigroframcalledthe
shell. The shell is a command-line interpreter: it reads lines typed by the user and intémgEmets
requests to execute other progranfShe shellis describediully elsewhere so this section will discuss

-9-

only the theory of its operation.) In simplest form, a command line consists of the command name fol-
lowed by arguments to the command, all separated by spaces:

command argarg, ...arg,

The shell splits up the command name andafygimentsnto separatestrings. Then a file with name
command is sought;command may be a path name including the “/” charactersfmecify any file in
the system.If command is found, it is brought into memory and executéthe arguments collected by
the shell are accessible to the commakdhen the command is finished, the shell resumeswitsexe-
cution, and indicates its readiness to accept another command by typing a prompt character.

If file command cannotbe found, the shell generally prefixes a string suchbas/ to command
and attempts again to find the fil®irectory /bin contains commands intended to be generally used.
(The sequence of directories to be searched may be changed by user request.)

6.1 Standard 1/0O

The discussion of I/O in Section Il above seems to imply that every filehysagdrogrammust
be opened or created by the program in order to get a file descriptor for therbgrams executed by
the shell, however, start off with three open files with file descrifiprk, and 2. As sucha program
beginsexecution,file 1 is open for writing, and is best understood as the standard outpuEfitept
under circumstances indicated below, this file is the user's termirals programs thawish to write
informative information ordinarily use file descriptor Conversely, file 0 starts off open fogading,
and programs that wish to read messages typed by the user read this file.

The shell is able to change the standard assignments of these file desttaptdhe user’stermi-
nal printer and keyboardIf one of the arguments to a command is prefixed by “>", file descriptor 1
will, for the duration of the command, refer to the file named after the “B8r example:

Is
ordinarily lists, on the typewriter, the names of the files in the current direcidwy.command:
Is >there

creates a file callethere and places the listing therelhus the argumertthere means “place output
onthere” On the other hand:

ed
ordinarily enters the editor, which takes requests from the user via his keyAd@dommand
ed <script

interpretsscript as a file of editor commands; thascript means “take input fronscript.”

Although the file namefollowing “<” or “>" appeardo be an argument to the command, in fact
it is interpretedcompletelyby the shell and is not passed to the command atTdllus no special coding
to handlel/O redirection is needed within each command; the command need merely use the standard
file descriptors 0 and 1 where appropriate.

File descriptor2 is, like file 1, ordinarily associated with the terminal output streaihen an
output-diversiorrequestwith “>" is specifiedfile 2 remains attached to the terminal, so that commands
may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard 1/0O notion is used to direct ofitpot one commandto the input of
another. A sequence of commands separated by vertical bars causes the shell to execute all the com-
mands simultaneously and to arrange that the standard output of each caperdetideredto the stan-
dard input of the next command in the sequentieus in the command line:
Is Opr -2 Oopr

Is lists the names of the files in the current directory; its output is pasgedwich paginates its input

-10 -

with dated headings(The argument “2” requests double-column outputllikewise, the output from
pr is input toopr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

Is >templ
pr —2 <templ>temp2
opr <temp?2

followed by removalof the temporaryfiles. In the absence of the ability to redirect output and input, a
still clumsier method would have been to require ltheommand to accept user requests to paginate its
output, to print in multi-column format, and to arrange itmbutput be deliveredoff-line. Actually it
would be surprising,andin fact unwise for efficiency reasons, to expect authors of commands slsh as
to provide such a wide variety of output options.

A program such apr which copies its standard input to its standard output (with processing) is
called afilter. Some filters that we have found useful perform chardaesliterationselectionof lines
according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Anotherfeatureprovided by the shell is relatively straightforwar@ommands need not be on dif-
ferent lines; instead they may be separated by semicolons:

Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interestindf. a command is followed by &,” the shell will not wait
for the command to finish before prompting again; instead, it is ready immedmtagepta new com-
mand. Forexample:

as sourceeoutput&

causessour ce to be assembledwith diagnostic output going toutput; no matter how long the assem-
bly takes, the shell returns immediatelyWhen the shell does not wait for the completion afoan-
mand,the identificationnumber of the process running that command is prinfdds identification may
be used to wait for the completion of the command or to terminatéhie.“ & may be used several
times in a line:

assource>output & Is>files &

does boththe assemblyand the listing in the background.In these examples, an output file other than
the terminal was provided; if this had not been ddhe outputsof the variouscommandswvould have
been intermingled.

The shell also allows parentheses in the above operatisrsexample:
(date;ls) >x &

writes the currentdateandtime followed by a list of the current directory onto the file The shell also
returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursiv8lypposefile tryout contains the
lines:

as source
mv a.out testprog
testprog

The mv command causes the fikeout to be renamedestprog. a.out is the (binary) output of the
assemblerready tobe executed. Thus if the three lines above were typed on the keybsardce
would be assembled, the resulting program renarestgrog, andtestprog executed. When the lines

-11 -

are intryout, the command:
sh <tryout

would cause the shedh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters andstouct
argument lists from a specified subset of the file names in a diredtosyso provides generaondi-
tional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understdbost of the time, the shell is
waiting for the user to type a commandlvhen the newline character ending the line is typed, the
shell's read call returns. The shell analyzes the command line, putting the arguments in a form
appropriate forexecute. Thenfork is called. The child process, whose code of course is still that of
the shell, attempts to perforam execute with the appropriatearguments. If successful, this will bring
in and start execution of the program whose name gian. Meanwhile,the other processresulting
from thefork, which is the parent processaits for the child process to dieWhen this happens, the
shell knows the command is finished, so it types its prompt and reads the keyboard to obtain another
command.

Given this framework, the implementation of background processes is trivial; whenever a com-
mand line contains &,” the shell merely refrains from waiting for the process that it createsedoute
the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output
files. When a process is created by fleek primitive, it inherits not only thenemoryimage of its
parent but also all the files currently open in its parent, including thosdilittescriptors0, 1, and 2.
The shell, of course, uses these files to read command lines and to write its prompts and diagnostics, and
in the ordinary case its children—the command programs—inherit them automatid#iign an argu-
mentwith “<” or “>" is given, however, the offspring process, just before it perfoexesute, makes
the standard 1/O file descriptor (0O or 1, respectively) refer to the namedTfiis.is easybecausehy
agreement, the smallest unused file descriptor is assigned when a nevogdadad (orcreated); it is
only necessary to close file 0 (or 1) and open the namedBieause the process in whitte com-
mand programruns simply terminates when it is through, the association between a file specified after
“<” or “>" and file descriptor 0 or 1 is ended automatically when ghecessdies. Thereforethe shell
neednot know the actualnamesof the files that are its own standard input and output, because it need
never reopen them.

Filters are straightforward extensions of standard 1/O redirection with pipes used instead of files.

In ordinary circumstancesthe main loop of the shell never terminat€3he main loop includes
the branch of the return frofiork belongingto the parent process; that is, the branch that deesita
then readsanothercommandline.) The one thing that causes the shell to terminate is discovering an
end-of-file condition on its input file.Thus, when the shell is executed as a commaitid a given
input file, as in:

sh <comfile

the commands icomfile will be executed until the end @bmfile is reached; then the instance of the
shell invoked bysh will terminate. Becausethis shell process is the child of another instance of the
shell, thewait executed in the latter will return, and another command may then be processed.

6.6 Initialization

The instancef the shell to which users type commands are themselves children of another pro-
cess. The last stepin the initialization of the system is the creation of a single process and the invoca-
tion (via execute) of a program callednit. The role ofinit is to create one process for edelminal
channel. The various subinstances ioiit open the appropriate terminals for input and output on files 0,
1, and 2, waiting, if necessary, for carrterbe establishedon dial-up lines. Then a messagas typed

-12 -

out requesting that the user log iWWhen the user types a name or otitemtification,the appropriate
instance ofinit wakesup, receives the log-in line, and reads a password fifethe user's name is
found, and if he is able tsupply the correctpasswordjnit changes to the user’'s default current direc-
tory, sets the process’s userto that of the person logging in, and performssagcute of the shell. At
this point, the shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path ioit (the parent of all the subinstancesitstlf that will later
become shells) doesveait. If one of the child processes terminates, either because a shell found an end
of file or because a user typed an incorrect nampassword,this path of init simply recreates the
defunct process, which in turn reopens the appropriate input and output files and types another log-in
message.Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full acciesfaailities of the system,
because it will invoke the execution of any program vétipropriateprotection mode. Sometimes,
however, a different interface to the system is desirable, and this feature is easily arranged for.

Recall that after a user has successfully logged in by supplymameand password,init ordi-
narily invokes the shell to interpret command lindhe user’s entry in the password file mzpntain
the name of a program to be invoked aftg-in insteadof the shell. This programis free to interpret
the user’'s messages in any way it wishes.

For example, the password file entries for users of a secreddiimg systemmight specify that
the editored is to be used instead of the shelthus when users of the editing system log in, they are
inside the editor and can beginwork immediately; also, they can be prevented from invoking programs
not intendedfor their use. In practice,it has proved desirable to allow a temporary escape from the edi-
tor to execute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) availalitee sgstemillustrate a
much more severely restricted environmemor each of these, an entry existsthe passwordfile
specifyingthat the appropriategame-playing program is to be invoked instead of the shdople who
log in asa playerof one of these games find themselves limited to the game and unable to investigate
the (presumably more interesting) offerings of ihex system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, suchefasencesto non-existent
memory,unimplemented instructions, and odd addresses used where an even address is i®gciired.
faults cause the processor to trap to a system routimdess other arrangements have bewtde,an
illegal action causeghe systemto terminate the process and to write its image orcdite in the current
directory. A debugger can be used to determine the state of the program at the time of the fault.

Programsthat are looping, that produce unwanted output, or about which the user has second
thoughts may be halted hiae use of the interrupt signal, which is generated by typing the “delete”
character. Unlessspecialaction has beentaken, this signal simply causes the program to cease execu-
tion without producing aore file. There is also ajuit signal used to force an imadie to be pro-
duced. Thus programs that loop unexpectedly may be halted and the remains inspected without prear-
rangement.

The hardware-generatefdults and the interrupt and quit signals can, by request, be either ignored
or caughtby a process. For example, the shell ignores quits to prevent a quit from logging the user out.
The editor catches interrupts and returns to its command l&Ves is usefulfor stoppinglong printouts
without losing work in progress (the editor manipulates a copy of the file it is editingdystems
without floating-point hardware, unimplemented instructions are caught and floatingfmstiotctions
are interpreted.

13-

VIII. PERSPECTIVE

Perhapsparadoxically,the success of theNix system is largely due to the fact that it was not
designedto meet any predefined objective$he first version was written when one of us (Thompson),
dissatisfiedwith the available computer facilities, discovered a little-used-7 and set out to create a
more hospitable environmentThis (essentially personal) effort was sufficiently successful to gain the
interest of the other author and several colleagues, and later to justify the acquisitiorrmd-14¢20,
specifically to support a text editing and formatting systéfthenin turn the 11/20 was outgrown, the
system had proved useful enough to persuade management to invesbim-1i¢45, and later in the
PDP-11/70 and Interdata 8/32 machines, upon which it developed to its present for@ur goals
throughoutthe effort, when articulated at all, have always been to build a comfortable relationship with
the machineandto exploreideas and inventions in operating systems and other softWdeehave not
been faced with the need to satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the desigonof are visible in retrospect.

First: becausewe are programmerswe naturally designed the system to make it easy to write,
test,and run programs. The mostimportantexpression of our desire for programming convenience was
that the system was arranged for interactive use, even though the original ealgi@upportedone
user. We believe that a properly designed interactive system is much more procudisatisfyingto
usethana “batch” system. Moreover, such a system is rather easily adaptable to noninteractive use,
while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its software.
Given the partially antagonistic desires for reasonable efficiency and exprpesree, the size con-
straint has encouraged not only economy, but also a cefganceof design. This may be a thinly
disguised version of the “salvation through suffering” philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain ifBeié. fact is more
important than it might seemlf designers of a system are forced to use #ystem,they quickly
becomeawareof its functional and superficial deficiencies and are strongly motivated to correct them
before it is too late.Because all source programs were always available and easily modified on-line, we
were willing to revise and rewrite the system and its software when new ideas were invented,
discovered, or suggested by others.

The aspects afinix discussedn this paper exhibit clearly at least the first two of these design
considerations.The interface to the file system, for example, is extremely convenient fromgeam-
ming standpoint. The lowest possibleinterfacelevel is designed to eliminate distinctions between the
various devices and files and betwelkrect and sequentialaccess. No large “accessmethod” routines
are required to insulate the programmer from the system calfactinall user programseither call the
system directly or use a small library program, less than a page longutfeat a numberof characters
and reads or writes them all at once.

Anotherimportantaspectof programmingconvenience is that there are no “control blocks” with
a complicatedstructurepartially maintainedby and depended on by the file system or other system calls.
Generally speaking, the contents of a program’s address space are the property of the anoigram,
have tried to avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable wittilanyr deviceas input orout-
put, it is also desirable to push device-dependent considerations into the operating systenihieself.
only alternatives seem to be to load, with all programs, routines for dealing with each device, which is
expensive in space, or to depend on some means of dynamically linking to the routine appropriate to
each device when it is actually needed, which is expensive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface have provedrivethientand
efficient. Becausethe shell operatesas an ordinary, swappable user program, it consumes no “wired-
down” space in the system proper, and it may be made as powerful as desired at little pasticu-
lar, given the framework in which the shell executes as a process that spawns other propesfemto
commands, the notions of I/O redirection, background processes, command files, and user-selectable sys-
tem interfaces all become essentially trivial to implement.

- 14 -

Influences

The success afnix lies not so much in new inventions but ratherthe full exploitation of a
carefully selected set of fertile ideas, and especially in showing that they can be keys to the implementa-
tion of a small yet powerful operating system.

The fork operation, essentially as we implemented it, was presetfieiGENIE time-sharing sys-
tem19 On a numberof pointswe wereinfluenced by Multics, which suggested the particular form of the
I/O system calfst and both the name of the shell and its general functidite notion thathe shell
should create a process for each command was also suggested to us by the early design of Multics,
although in that system it was later dropped for efficiency reasénsimilar schemeis used by
TENEX.12

IX. STATISTICS

The following numbers are presented to suggest the etdle Researclunix operation. Those
of our users not involved in document preparation tend to use the si@mtgmogramdevelopment,
especially language workThere are few important “applications” programs.

Overall, we have today:

125 usermopulation
33 maximum simultaneous users
1,630 directories
28,300 files
301,700 512-byte secondary storage blocks used

Thereis a “background” process that runs at the lowest possible priority; it is used to soak up any idle
CcPU time. It has been used to produce a million-digit approximat@mthe constante, and other semi-
infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 cPU hours
230 connechours
62 differentusers
240 log-ins

X. ACKNOWLEDGMENTS

The contributors taNIx are,in the traditional but here especially apposite phrase, too numerous
to mention. Certainly, collective salutes are due to our colleagues in the Computing Science Research
Center. R. H. Canaday contributed much to the basic desigthe file system. We are particularly
appreciativeof the inventivenessthoughtful criticism, and constant support of R. Morris, M. D. Mcll-
roy, and J. F. Ossanna.

References
1. L. P. Deutschand B. W. Lampson, “An online editor,Comm. Assoc. Comp. Mach0(12),
pp.793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, “A System for Typesetting MathematiocSdmm. Assoc.
Comp. Machl18, pp.151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna,Nf{J Time-Sharing System: Document
Preparation,”Bell Sys. Tech. &7(6), pp.2115-2135 (1978).

10.

11.

12.

- 15 -

T. A. Dolotta and J. R. Mashey, “An Introduction to the Programmer’'s Workbenehgt. 2nd
Int. Conf. on Software Engineeringp.164-168 (October 13-15, 1976).

T. A. Dolotta, R. C. Haight, and J. R. Mashey, ik Time-Sharing System: The Programmer’s
Workbench,”Bell Sys. Tech. k7(6), pp.2177-2200 (1978).

H. Lycklama, “UNix Time-Sharing System: Nix on a Microprocessor,Bell Sys. Tech. B7(6),
pp.2087-2101 (1978).

B. W. Kernighan and D. M. Ritchiefhe C Programming Languag®rentice-Hall, Englewood
Cliffs, New Jersey (1978).

Aleph-null, “Computer Recreations,Software Practice and Experiend€2), pp.201-204 (April-
June 1971).

S. R. Bourne, “Wix Time-Sharing System: TheNwk Shell,” Bell Sys. Tech. B7(6), pp.1971-
1990 (1978).

L. P. Deutsch and B. W. Lampsonsds 930 time-sharing system preliminargferencemanual,”
Doc. 30.10.10, Proje®ENIE, Univ. Cal. at Berkeley (April965).

R. J. Feiertagand E. I. Organick, “The Multics input-output systenfPtoc. Third Symposium on
Operating Systems Principlegp.35-41 (October 18-20, 1971).

D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. TomlinsongNEX, a Paged Timé&har-
ing System for thepr-10,” Comm. Assoc. Comp. Mactb(3), pp.135-143 (March 1972).

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started asntké operating systemilt
includes:

« basicsneededfor day-to-day use of the system — typing commands, correcting
typing mistakes, logging in and ounail, inter-terminal communication,the file
system, printing files, redirecting 1/O, pipes, and the shell.

* document preparation — a brief discussiontte# major formatting programsand
macro packages, hints on preparing documents, and capsule descriptions of some
supporting software.

e UNIX programming — using the editor, programming the shell, programming in C,
other languages and tools.

* An annotatedUNIX bibliography.

October 2, 1978

TUNIX is a Trademark of Bell Laboratories.

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user’s point of view, theNIX operat-
ing system is easy to learn and use, presentdew
of the usualimpediments to getting the job donét
is hard, however, for the beginner to know where
start, and how to make the best use of the facilities
available. The purposeof this introduction is to help
new users get used to the maieasof the UNIX sys-
tem and start making effective use of it quickly.

You should have a couple of other documents
with you for easy reference as you read this ofite
most importantis The UNIX Programmer’s Manual
it's often easier to tell you toeadaboutsomethingin
the manual than to repeat its contents hefée other
useful document isA Tutorial Introduction to the
UNIX Text Editor,which will tell you how to use the
editor to get text — programs, data, documents —
into the computer.

A word of warning: the UNIX system has
become quite popular, and there are several major
variants in widespread useOf course details also
changewith time. So althoughthe basic structure of
UNIX and how to use it is commoto all versions,
there will certainly be a few things which are dif-

ferent on your system from what is described here.

We have tried to minimize the problem, but be aware
of it. In casesof doubt, this paper describes Version
7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type,
what to do about mistakes in typing, howlog
out. Someof thisis dependent on which system
you log into (phone numbers, for examp#)d
what terminal you use, so thisection must
necessarilybe supplemented by local informa-
tion.

2. Day-to-day Use: Things you neeckvery day to
use the system effectively: generally useful
commands; the file system.

3. DocumentPreparation: Preparing manuscripts is
one of the mostommonusesfor UNIX systems.
This section contains advice, but not extensive
instructions on any of the formatting tools.

4. Writing Programs: UNIX is an excellent system
for developing programs. This section talks
about some of the tools, but again is not a
tutorial in any of the programmindganguages
provided by the system.

5. A UNIX ReadingList. An annotated bibliogra-
phy of documents that new users should be
aware of.

I. GETTING STARTED

Logging In

You must havea UNIX login name, which you
can get from whoever administers your systeYfou
also need to know the phone number, unless your
system uses permanently connectedminals. The
UNIX system is capable of dealing with a wide
variety of terminals: Terminet 300’s;Execuport, Tl
and similar portables; video (CRT) terminals like the
HP2640, etc.; high-priced graphics terminals like
Tektronix 4014; plotting terminals like those from
GSI and DASI; and even the venerabletypein its
various forms. But note: UNIX is strongly oriented
towards deviceswith lower case. If your terminal
producesonly upper case (e.g., model 33 Teletype,
some video and portable terminal$ife will be so
difficult that you should look for another terminal.

Be sureto set the switches appropriately on your
device. Switches that might need to badjusted
include the speed, upper/lower case modell
duplex, even parity, and any others thwtal wisdom
advises. Establish a connection usighatevermagic
is needed for your terminal; thimay involve dialing
a telephone call or merely flippiregswitch. In either
case,UNIX should type“login:” at you. If it types
garbage, you may be at the wrong speed; check the
switches. If that fails, push the “break’or “inter-
rupt” key a few times, slowly. If that fails to pro-
duce a login message, consult a guru.

When you get dogin: message, type your login
namein lower case. Follow it by aRETURN; the sys-
tem will not do anything until you type RETURN.

If a password is required, you will be asked for it,
and (if possible) printing will be turned off while you
type it. Don't forgetRETURN.

The culmination of your login effortsis a
“prompt character,” a singleharacterthat indicates
that the system is readyp acceptcommandsfrom
you. The prompt character is usually a dollar s§n
or a percent sigds. (You may also get a message
of the day just before the prompt character, aor
notification that you have mail.)

Typing Commands

Once you've seen the prompt character, gan
type commands, which are requests that ghstem
do something.Try typing

date

followed by RETURN. You should get back some-
thing like

Mon Jan 16 14:17:10 EST 1978
Don't forget theRETURN after the command, or noth-
ing will happen. If you think you're being ignored,
type aRETURN; something shouldappen. RETURN

won't be mentioned again, but don't forget it #
has to be there at the end of each line.

Another commandyou might try iswho, which
tells you everyone who is currently logged in:

who

gives something like

mb ttyol Jan 16 09:11
SKi tty05 Jan 16 09:33
gam ttyl11 Jan 16 13:07

The time is whenthe user logged in; “ttyxx” is the
system’s idea of what terminal the user is on.

If you make a mistake typing the command
name,and refer to a non-existent command, you will
be told. For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type tmameof some
other command, it will run, with more dess mys-
terious results.

Strange Terminal Behavior

Sometimes you can get into a state where your
terminal actsstrangely. For example, each letter may
be typed twice, or thRETURN may not cause a line
feed or a return to the left margin‘ou can often fix
this by logging out and logging back irOr you can
readthe description of the commarstty in section |
of the manual. To get intelligent treatment of tab
characters (which are much usedJiiX) if your ter-
minal doesn't have tabs, type the command

stty —tabs

and the system will convert each tab into the right
number of blanks for youlf your terminal doe$have
computer-settable tabs, the commaalds will set the
stops correctly for you.

Mistakes in Typing

If you makea typing mistake, and see it before
RETURN has been typed, there ateo ways to
recover. The sharp-charactet eraseghe last charac-
ter typed; in fact successive usestofrasecharacters
back to the beginning of the lingout not beyond).
So if you type badly, you can correct as you go:

dd#atteftte

is the same adate.

The at-sigh @ erasesall of the characters typed
so far on the current input line, so if the lineirie-
trievably fouled up, type a@ and start the line over.

Whatif you mustenter a sharp or at-sign as part
of the text? If you precede eithe# or @ by a
backslash, it loses its erase meaningo to enter a
sharp or at-sign in something, typ or \@. The
system will always echo a newline at you after your
at-sign, even if preceded by a backslagron't worry
— the at-sign has been recorded.

To erase a backslash, you have to typ®
sharps or two at-signs, as ##. The backslashis
used extensively iWNIX to indicate that the follow-
ing character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
can type as fast as you want, whenever want,
evenwhen some command is typing at yolf. you
type during output, your input charactewdl appear
intermixed with the output characters, by will be
stored away and interpreted in the correct ordgo.
you can type several commands one after another
without waiting for the first to finish or even begin.

Stopping a Program

You can stop most prograniy typing the char-
acter “DEL” (perhaps called “delete” or‘rubout”
on your terminal). The “interrupt” or “break” key
found on mostterminals can also be usedin a few
programs like the text editorDEL stops whatever the
program is doing but leaves you that program.
Hanging up the phone will stop most programs.

Logging Out
The easiest way to log out is to hang tne
phone. You can also type
login

and let someoneelse use the terminal you were on.
It is usually not sufficient just to turn offfie terminal.
MostUNIX systems do not use a time-out mechanism,

so you'll be there forever unless you hang up.

Mail
When you log in, you may sometimes get the
message

You have mail.

UNIX provides a postal system gou can communi-
cate with other users of the systenilo read your
mail, type the command

mail
Your mail will be printed, onemessageat a time,
most recent message firshfter eachmessagemail
waits for you to say whato do with it. The two
basic responses atk which deletes the message, and
RETURN, which does not (so it will still be thetbe
next time you read your mailbox)Other responses
are described in the manugaEarlier versionsof mail
do not process one message at a time,abeibther-
wise similar.)

How do you send mail to someone elseSup-
pose it is to go to “joe” (assuming “joe” is
someone’s login name)The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as you like ...
After the last line of the letter

type the character “contreld”,

that is, hold down “control” and type
a letter “d”.

And that'sit. The “control-d” sequence, often called
“EOF” for end-of-file, is used throughout the system
to mark the end of input from a terminal, so you
might as well get used to it.

For practice, send mail to yoursel{This isn't
as strange as it might sound — mail to oneself is a
handy reminder mechanism.)

There are other ways to send mail — you can
send a previously prepared letter, and you can mail to
a numberof people all at onceFor more details see
mail(1). (The notation mail(1) means the command
mail in section 1 of th&JNIX Programmer’'s Manua)

Writing to other users
At some point, out of the blue wilomea mes-
sage like
M essage from joe tty07...

accompanied by a startling beeft means thatloe
wants to talk to you, but unless you take explicit
action you won't be able to talk backlTo respond,
type the command

write joe

This establishesa two-way communication path.
Now whatever Joe types on his termiméll appear

on yours and vice versalrhe path is slow, rather like
talking to the moon. (If you are in themiddle of
something,you have to get to a state where you can
type a command.Normally, whatever progranyou
are running has to terminate or be terminatedt
you're editing, you can escape temporarily from the
editor — read the editor tutorial.)

A protocolis needed to keep what you type from
getting garbled up with what Joe typdgpically it's
like this:

Joe typeswrite smith and waits.

Smith typeswrite joe and waits.

Joenow types his message (as many lines as
he likes). When he’s ready for a reply, he
signals it by typing(o), which stands for
“over”.

Now Smith types a reply, also terminated by
(0).

This cycle repeats until someone gets titeg;
then signals his intent to quitith (oo), for
“over and out”.

To terminate the conversation, each side must
type a “control-d” character alonen a line.
(“Delete” also works.) When the other
persontypes his “control-d”, you will get the
messagd&OF on your terminal.

If you write to someone who isn’t logged in, or
who doesn’'t want to belisturbed,you’ll be told. If
the target is logged in but doesn't answer after a
decent interval, simply type “control-d”.

On-line Manual

The UNIX Programmer's Manualis typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, yean print on
your terminal some manual section that might help.
This is also useful for getting the most up-to-date
information on a commandTo print a manual sec-
tion, type “man command-name” Thus to readup
on thewho command, type

man who
and, of course,
man man

tells all about thenan command.

Computer Aided Instruction

Your UNIX system may have available a program
called learn, which provides computeaiided instruc-
tion on the file system and basic commands, the edi-
tor, document preparation, and ev@rprogramming.
Try typing the command

learn

If learn existson your system, it will tell you what to
do from there.

1. DAY-TO-DAY USE

Creating Files — The Editor

If you haveto type a paper or a letter or a pro-
gram, how do you get thimformation storedin the
machine? Most of these tasks are done with the
UNIX “text editor” ed. Sinceed is thoroughly docu-
mented ined(1) and explained i\ Tutorial Introduc-
tion to the UNIX Text Editorwe won't spend any
time here describing how to use iAll we want it
for right now is to make somfiles. (A file is just a
collection of information stored in the machina,
simplistic but adequate definition.)

To create a file callepunk with some text in it,
do the following:

ed junk (invokes the text editor)
a (command to “ed”, to add text)
now type in

whatever text you want ...
(signals the end of adding text)

The *.” that signals the end of addingxt must be
at the beginning of a line by itselfDon’t forget it,
for until it is typed, no otheed commands will be
recognized — everything you type will be treatesl
text to be added.

At this point you can do various editing opera-
tions on the text you typeih, such as correcting
spelling mistakes, rearranging paragraphs and the like.
Finally, you must write theinformation you have
typed into a file with the editor commamnd

w

ed will respond with the number otharactersit
wrote into the filgunk.

Until the w command, nothing is stored per-
manently, so if you hang up and go hothe infor-
mation is lost.t But afterw the information isthere
permanently; you can re-access it any time by typing

ed junk

Type ag command to quit the editor(If you try to
quit without writing, ed will print a ? to remind you.
A secondq gets you out regardless.)

Now create a second file calldgmp in the

samemanner. You shouldnow have two filesjunk
andtemp.

What files are out there?

Thels (for “list”) command lists the names (not
contents) of any of the files thaNIX knows about.
If you type

T This is not strictly true — if you hang up whiégliting, the
data you were working on is saved in a file calethup,
which you can continue with at your next session.

Is
the response will be

junk
temp

which are indeed the twdiles just created. The
names are sorted into alphabeticader automati-
cally, but other variations are possibl€or example,
the command

Is—t

causes the files to be listed in theerin which they
were last changed, most recent firhe —| option
gives a “long” listing:

Is—I
will produce something like

—rw—rw—rw— 1bwk 41 Jul 22 2:56 junk
—rw—rw—rw— 1bwk 78 Jul 22 2:57 temp

The date and time are of the last chamgehe file.
The 41 and 78 are the number of characters (which
should agree with the numbers you got fraaah).
bwk is the owner of the file, that is, the person who
created it. The —rw—rw—rw- tells who has permis-
sion to read and write the file, in this case everyone.

Options can be combineds —It gives the same
thing asls—I, but sorted intotime order. You can
also name the files you're interested amnd Is will
list the information about them onlyMore details
can be found irs(1).

The use of optional arguments that begin with a
minus sign, like-t and—It, is a common convention
for UNIX programs. In general, if a program accepts
such optional arguments, they precede any filename
arguments. It is also vital that you separate the vari-
ous arguments with spacess-I| is not the sameas
Is —I.

Printing Files
Now that you've got a file of texhow do you

print it so people can look at itThere are a host of
programs that do that, probably more than are needed.

One simple thing is to ugde editor, since print-
ing is often done just before making changes anyway.
You can say

ed junk
1.%p

ed will reply with the count of the characters jiank

and then print all the lines in the filéfter you learn
how to use the editor, you can be selective about the
parts you print.

There are times when it's not feasible to tise
editor for printing. For example, there is a limit on
how big a fileed can handle (several thousand lines).
Secondly, it will only print ondfile at a time, and

-5-

sometimes you want to print several, one after
another. So here are a couple of alternatives.

First is cat, the simplest of all therinting pro-
grams. cat simply prints on the terminal the contents
of all the files named in a listThus

cat junk
prints one file, and
cat junk temp

prints two. The files are simplyoncatenatedhence
the name ‘¢at”) onto the terminal.

pr produces formatted printouts fifes. As with
cat, pr prints all the files named in a lisiThe differ-
enceis thatit produces headings with date, time, page
number and file name at the top of eagdge, and
extra lines to skip over the fold in the papdtus,

pr junk temp

will print junk neatly, then skip to the top of a new
page and printemp neatly.

pr can also produce multi-column output:
pr =3 junk

prints junk in 3-column format. You can useany
reasonableaumber in place of “3” andr will do its
best. pr has other capabilities as well; sgg1).

It should be noted thapr is not a formatting
program in the sense of shuffling lines arowmt
justifying margins. The true formatters aneroff and
troff, which we will get to in the section on docu-
ment preparation.

There are also programs that print files on a
high-speedprinter. Look in your manualunder opr
andlpr. Which to use depends on what equipment is
attached to your machine.

Shuffling Files About

Now that you have some files the file system
and some experience in printirtgem, you can try
bigger things. For example, you can move a file from
one place to another (which amountsdiging it a
new name), like this:

mv junk precious

This meansthat what used to be “junk” is now
“precious”. If you doanls command now, you will
get

precious
temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost
forever.

If you want to make aopy of a file (that is, to
have two versions of something)ou can usethe cp
command:

cp precious templ

makes a duplicate copy pfecious in templ.

Finally, when you get tiredf creatingand mov-
ing files, there is a command to remove fii@sn the
file system, calledm.

rm temp templ
will remove both of the files named.

You will get a warning message if one of the
named files wasn't there, but otherwisa, like most
UNIX commands, does its work silentlyThereis no
prompting or chatter, and error messages occa-
sionally curt. This terseness is sometimes disconcert-
ing to newcomers, but experiencesersfind it desir-
able.

What's in a Filename

So far we have usefilenameswithout ever say-
ing what's a legal name,so it's time for a couple of
rules. First, filenames are limited to 14 characters,
which is enough to be descriptiveSecond,although
you can use almost any character ifilename,com-
mon sense says you should stick to ones that are visi-
ble, and that you should probably avaitiaracters
that might be used with other meaningg/e have
already seen,for example, that in thés command,
Is—t means to list in time orderSo if you had a file
whose namewas —t, you would have a tough time
listing it by name. Besides the minusign, thereare
other characters which havepecial meaning. To
avoid pitfalls, you would do well to use only letters,
numbers and the period until you're familiar witie
situation.

On to some more positiveuggestions. Suppose
you're typing a large document like a bookogi-
cally this divides into many small piecedike
chapters and perhaps sectiorBhysically it must be
divided too, fored will not handle reallybig files.
Thus you should type the document asuanber of
files. You might have a separate file for each chapter,
called

chapl
chap2
etc...

Or, if eachchapter were broken into several files, you
might have

chapl.l
chapl.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a particular file
fits into the whole.

There are advantages to systematic naming
convention which are not obvious to thevice UNIX
user. What if you wanted to print the whole book?
You could say

pr chapl.1 chapl.2 chapl.3

but you would get tired pretty fast, amebuld prob-
ably even make mistakesFortunately, there is a
shortcut. You can say

pr chap*

The* means “anything at all,” so this translatego
“print all files whose names begin witthap”, listed
in alphabetical order.

This shorthand notation is not a propertytoé
pr command, by the waylt is system-wide, aer-
vice of the program that interprets commands (the
“shell,” sh(1)). Using that fact, you can sémw to
list the names of the files in the book:

Is chap*
produces

chapl.1
chapl.2
chapl.3

The * is not limited to the last position in fdename
— it can be anywhere and can occur several times.
Thus

rm *junk* *temp*
removes all files that contaijunk or temp as any

part of their name.As a special case,* by itself
matches every filename, so

pr *
prints all your files (alphabetical order), and
rm*

removesall files. (You had better beery sure that's
what you wanted to say!)

The * is not the only pattern-matching feature
available. Suppose you want to print onghaptersl
through 4 and 9.Then you can say

pr chap[12349]*

The[...] means to match any of the characters inside
the brackets. A range of consecutiviettersor digits
can be abbreviated, so you can also do this with

pr chap[1-49]*

Letters can also be used withibrackets: [a—Z]
matches any character in the rargéhroughz.

The ? pattern matches any single character, so
Is?

lists all files which have single-character names, and

Is—I chap?.1

lists information about the first file of each chapter
(chapl.1, chap2.1, etc.).

Of these nicetiest is certainly the most useful,
and you should get used to iThe others are frills,
but worth knowing.

If you should ever have to turn off the special
meaning of*, ?, etc., enclose the enti@gumentin
single quotes, as in

Is'?

We'll see some more examples of this shortly.

What’s in a Filename, Continued

When you first made that file callgdnk, how
did the system know that there wasn’t anotherk
somewhereelse, especially since the person in the
next office is also reading this tutorialPhe answer
is that generally each user has a privdirectory,
which contains only the files that belong kim.
When you log in, you are “in” your directory.
Unless you take special action, when you create a
new file, it is made in the directory that you are
currently in; this is most often your own directory,
and thus the file is unrelated to any other @fethe
same name that might exist someoneelse’s direc-
tory.

The set of all files is organized into a (usually
big) tree, with your files located several brancims
thetree. It is possible for you té'walk” aroundthis
tree, and to find any file in the system, by starfihg
the root of the tree and walking along the proper set
of branches. Conversely, you can start where yane
and walk toward the root.

Let’s try the latter first. The basic tools is the
command pwd (“print working directory”), which
prints the name of the directory you are currently in.

Although the details will vary according tihe
system you are on, if you give the commawad, it
will print something like

/usrlyour-name

This says that you are currentiy the directory
your-name, which is in turn in the directoryusr,
which is in turn in the root directory called by con-
vention just/. (Even if it's not called/usr on your
system,you will get something analogousMake the
corresponding changes and read on.)

If you now type
Is /usr/your-name

you should get exactly the same list of file narass
you get from a plairs: with no argumentsls lists
the contents of the current directory; given the name
of a directory, it lists the contents of that directory.

Next, try
Is fusr

This should print a longseries of names, among
which is your own login namgour-name. Onmany
systems,usr is a directory thatcontainsthe direc-
tories of all the normal users of the system, like you.

The next step is to try
Is/

You should get a response something like this
(although again the details may be different):

bin

dev

etc

lib

tmp

usr

This is a collection of the basidirectoriesof files
that the system knows about; we are at the root of the
tree.

Now try
cat /usr/your-name/junk
(if junk is still around in your directory) The name
Jusr lyour -name/junk

is called thepathname of the file that you normally
think of as “junk”. “Pathname” hasan obvious
meaning: it represents the full name of the path you
haveto follow from the root through the tree of direc-
tories to get to a particular filelt is a universalrule

in the UNIX system that anywhere you can use
ordinary filename, you can use a pathname.

Here is a picture which may make this clearer:

(root)
/ O\
/ O\
/ O\
bin etc usr devtmp
/0\ 770V 70\ 70\ 70\
/ O\
/ O\
adam eve mary
/ / \ \
/7 \ junk
junk temp

Notice that Mary'sunk is unrelated to Eve’s.

This isn’t too exciting if all the files of interest
are in your own directory, buif you work with
someone else or on several projects concurreiitly,
becomeshandy indeed. For example, your friends
can print your book by saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neighbor
has by saying

Is /usr/neighbor-name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking around
in his files, or vice versa, privacy cde arranged.
Eachfile and directory has read-write-execute permis-
sions for the owner, a group, and everyone else,
which can be set to control accesSeels(1) and
chmod(1) for details. As a matter of observed fact,
most users most of the time find opennessmofe
benefit than privacy.

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names look familiaf®hen yourun

a program,by typing its name after the prompt char-
acter, the system simply looks for a file of that name.
It normally looks first in your directory (where it typi-
cally doesn't find it),then in /bin and finally in
Jusr/bin. There is nothing magic about commands
like cat or Is, exceptthat they have been collected
into a couple of places to be easy to find and admin-
ister.

What if you work regularly with someone else
on commoninformation in his directory?You could
just log in asyour friend each time you want to, but
you can also say “I want to work dmis files instead
of my own”. This is done by changinthe directory
that you are currently in:

cd /usr/your-friend

(On some systemsd is spelledchdir.) Now when
you use a filename in something likat or pr, it
refers to the file in your friend’s directoryChanging
directoriesdoesn’'t affect any permissions associated
with a file — if you couldn’t access a file from your
own directory, changing to another directory won't
alterthatfact. Of course, if you forget what directory
you're in, type

pwd
to find out.

It is usually convenient to arrange your own files
so that all the files related to ott@ng arein a direc-
tory separate from other projectsor example, when
you write your book, you might want to keefl the
text in a directory callethook. So make one with

mkdir book
then go to it with
cd book

then start typing chaptersThe book is nowfound in
(presumably)

/usr lyour -name/book

To remove the directorigook, type

rm book/*
rmdir book

The first commandremoves all files from the direc-
tory; the second removes the empty directory.

You can go up one level in the tree of fileg
saying
cd ..

is the name of the parerdf whateverdirectory
you are currentlyin. For completeness; .” is an
alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commandswve have seen so far pro-
duce output on the terminal;, some, like the editor,
also take their input from the terminalt is universal

in UNIX systems that the terminal can be replaced by

a file for either or bottof input and output. As one
example,

Is
makes a list of files on your terminaBut if you say
Is >filelist

a list of your files will be placed in théle filelist
(which will be created if it doesn't already exist, or
overwrittenif it does). The symbol> means “put the
output on the following file, rather than dime termi-
nal.” Nothing is produced on theerminal. As
another example, you could combiseveralfiles into
one by capturing the output oft in a file:

cat f1 f2 f3 >temp

The symbol>> operates very much like does,
except that it means “add to the end ofThat is,

cat f1 f2 f3 >>temp

means to concatenafd, f2 and f3 to the end of
whateveris already intemp, instead of overwriting
the existing contents.As with >, if temp doesn’t
exist, it will be created for you.

In a similar way, the symbet meansto take the
input for a program from the following file, insteafl
from the terminal. Thus, you could make up a script
of commonly used editing commandsd put them
into a file called script. Then you can run the script
on a file by saying

ed file <script

As another example, you can usd to prepare a
letter in filelet, then send it to several people with

mail adam eve mary joe <let

Pipes

One of the novel contributionsf the UNIX sys-
tem is the idea of @ipe. A pipe is simply away to
connectthe output of one program to the input of
another program, so the two run as a sequence of
processes — a pipeline.

For example,
prfgh

will print the filesf, g, and h, beginning each on a
new page. Suppose you want them rutogether
instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessarglearly what
we want is to take the output oft and connect it to
the input ofpr. So let us use a pipe:

cat f gh Opr

The vertical bafl means to take theutputfrom cat,
which would normally have gont® the terminal, and
put it intopr to be neatly formatted.

There are many other examples of pipegror
example,

IsOpr —3

prints a list of your files in threeolumns. The pro-
gramwc counts the number of linesjords and char-
acters in its input, and as veaw earlier,who prints a
list of currently-logged on people, one per linEhus

who Owc
tells how many people are logged oAnd of course
Is Owc

counts your files.

Any programthat reads from the terminal can
read from a pipe instead; any program tivates on
the terminal can drive a pipe¥ou canhaveas many
elements in a pipeline as you wish.

Many UNIX programs are written so that they
will take their input from one or more files if file
arguments are given; if no arguments are gitrey
will read from the terminal, and thus can beedin
pipelines. pr is one example:

pr-3abc
prints filesa, b andc in order in three columnsBut
in

cat ab c Opr -3

pr prints the information coming down the pipeline,
still in three columns.

The Shell

We have already mentioned onoe twice the
mysterious “shell,” which is in facsh(1). Theshell
is the program that interprets what you type as com-
mandsand arguments. It also looks after translating
* etc., into lists of filenames, and >, and O into
changes of input and output streams.

The shell has other capabilities tod-or exam-
ple, you can run two programs with omemmand
line by separatingthe commands with a semicolon;
the shell recognizes the semicolon dmdaksthe line
into two commands.Thus

date; who

does both commands before returning witprampt
character.

You can also have morhan one progranrun-
ning simultaneoushif you wish. For example, if you
are doing something time-consuming, like the editor
script of an earlier section, and you dowant to
wait around for the results before starting something
else, you can say

ed file <script &

The ampersandat the end of a command line says
“start this command running, then takerther com-
mands from the terminal immediatelythat is, don't
wait for it to complete. Thus the script will begin,
but you can do something else at the same tina.
course, to keep the output from interfering with what
you're doing on the terminal, itvould be better to
say

ed file <script >script.out &

which saves the output lines i file called

script.out.

When you initiate a command wit&, the sys-
tem replies with a number called the process number,
which identifies the command in case yater want
to stop it. If you do, you can say

Kill process-number

If you forget the process number, teemmandps
will tell you about everything you have runnindf
you aredesperatekill 0 will kill all your processes.)
And if you're curious about other peoplps a will
tell you aboutall programs that are currently running.

You can say
(command-1; command-2; command-3) &

to start three commands in the background, or you
can start a background pipeline with

command-1 Ocommand-2 &
Just as you can tell the editor or some similar

program to take its input from fde insteadof from
the terminal,you cantell the shell to read a file to get

commands. (Why not? The shell, after all, is just a
program, albeit a clever onefror instance,suppose
you want to set tabs on your terminal, ditd out
the dateand who's on the system every time you log
in. Then you can put the three necessamynmands
(tabs, date, who) into a file, let's call itstartup, and
then run it with

sh startup

This says to run the shell with the fikartup as
input. The effect is as if you had typdHe contents
of startup on the terminal.

If this is to be a regular thingjou can eliminate
the need to typeh: simply type, once only, the com-
mand

chmod +x startup
and thereafter you need only say
startup

to run the sequence of command3he chmod(1)
commandmarks the file executable; the shell recog-
nizes this and runs it as a sequence of commands.

If you want startup to run automatically every
time you log in, create a file in yolmgin directory
called .profile, and place in it the linestartup.
When the shell first gains control when you lagit
looks for the.profile file and does whatever com-
mands it finds in it.We’ll get back tothe shellin the
section on programming.

I11. DOCUMENT PREPARATION

UNIX systems are used extensivéty document
preparation. There are two majofformatting pro-
grams, that is, programs that produce a text with
justified right margins, automatic page numbering and
titing, automatic hyphenation, and the likeroff is
designedto produce output on terminals and line-
printers. troff (pronounced “tee-roff”) instead drives
a phototypesetter, which produces very high quality
output on photographic paperThis paper was for-
matted withtroff.

Formatting Packages

The basic idea ofiroff andtroff is that the text
to be formatted contains within iformatting com-
mands” that indicate in detail how the formattet
is to look. For example, there might be commands
that specify how long lines are, whetheruge single
or double spacing, and what running titlesute on
each page.

Becausenroff and troff are relatively hard to
learn to use effectively, several “packages” of
cannedformatting requests are available to let you
specify paragraphs,running titles, footnotes, multi-
column output, and so on, witlittle effort and
without having to learmroff andtroff. Thesepack-

-10 -

agestakea modest effort to learn, but the rewards for
using them are so great that it is time well spent.

In this section, we will provide a hasty look at
the “manuscript” package known asms. Format-
ting requeststypically consist of a period and two
upper-case letters, such &BL, which is used to
introduce a title, ortPP to begin a new paragraph.

A document is typed so it looks somethilike
this:

TL

title of document
AU

author name

.SH

section heading

.PP

paragraph ...

.PP

another paragraph ...
.SH

another section heading
.PP

etc.

The lines that begin with a period are the formatting
requests. Foexample,.PP calls for starting a new
paragraph. The precise meaningf .PP depends on
what output device is beingsed(typesetteror termi-
nal, for instance), and on whpatblication the docu-
ment will appear in. For example,—ms normally

that closely resembles the way you would speak it
aloud. For example, thegn input

sum from i=0to n x sub i =" pi over 2

produces the output
n
_T
ZO’“ T

The programtbl provides an analogouservice
for preparing tabular material; it does all the computa-
tions necessary to align complicated columns with
elements of varying widths.

refer prepares bibliographic citations from a data
base, in whatever style is defined the formatting
package. It looks after all the details ofiumbering
references in sequence, filling page and volume
numbers, getting the author’s initials and fjbarnal
name right, and so on.

spell and typo detect possible spelling mistakes
in a document. spell works by comparing the words
in your document to a dictionary, printing those that
are not in the dictionary.lt knows enough about
English spelling to detect plurals and the lils®, it
does a very good jobtypo looks for words which
are “unusual”’, and prints thoseSpelling mistakes
tend to be more unusual, and thus show up early
when the most unusual words are printed first.

grep looks through a set of files for lines that
contain a particular text pattern (rather likae

assumes that a paragraph is preceded by a space (one€ditor's context search does, but on a bunch of files).

line in nroff, % line in troff), and the first word is
indented. These rules can be changed if yidke, but
they are changed by changinlge interpretation of
.PP, not by re-typing the document.

To actually producea document in standard for-
mat using-ms, use the command

troff —msfiles ...
for the typesetter, and
nroff —ms files ...

for a terminal. The —ms argument tellstroff and
nroff to use the manuscript package of formatting
requests.

There are several similar packages; check waith
local expertto determine which ones are in common
use on your machine.

Supporting Tools

In addition to the basic formatters, there is a host
of supporting programs thahelp with document
preparation. The list in the next few paragraphs is far
from complete, so browse through the manaad
check with people around you for other possibilities.

egn and negn let you integrate mathematics into

For example,
grep 'ing$ chap*

will find all lines that end with the lettelimg in the
files chap*. (It is almost always a good practice to
put single quotes around the pattgau’re searching
for, in case it contains characters likeor $ that have
a special meaning to the shellgrep is often useful
for finding out in which of a set of files the

misspelled words detected bgpell are actually
located.

diff prints a list of the differences between two
files, so you can compate/o versionsof something
automatically (which certainly beats proofreading
hand).

wc counts the words, lines and characters in a
set offiles. tr translates characters into other charac-
ters; for exampleit will convert upper to lower case
and vice versa.This translates upper into lower:

tr A—Z a—z <input >output

sort sorts files in a variety of waysref makes
cross-references;ptx makes a permuted index
(keyword-in-context listing). sed provides many of
the editing facilities ofed, but can apply them to
arbitrarily long inputs. awk provides the ability to do

the text of a document, in an easy-to-learn language both pattern matching and numedemputationsand

-11 -

to conveniently process fields within linesThese
programs are for more advanced users] they are
not limited to documentreparation. Put them on
your list of things to learn about.

Most of these programs are either independently
documented (likeegn and tbl), or are sufficiently
simple that the description in theNIX Programmer’s
Manual is adequate explanation.

Hints for Preparing Documents

Most documents go through severaérsions
(always more than you expected) before they are
finally finished. Accordingly, you should do whatever
possible to make the job of changing them easy.

First, when you do theurely mechanicalopera-
tions of typing, type so that subsequent editing will
be easy. Start each sentence anew line. Make
lines short, and break lines at natural plaseshas
after commas and semicolons, rathlean randomly.
Since most people change documents by rewriting
phrases and adding, deletirend rearranging sen-
tences, these precautions simplify any edityau
have to do later.

Keep the individual files of a document dowm
modest size, perhaps ten to fiftedmusandcharac-
ters. Larger files edit more slowly, and of course if
you make a dumb mistake it's better to have clob-
bereda small file than a big one.Split into files at
naturalboundaries in the document, for the same rea-
sons that you start each sentence on a new line.

The second aspect of making charegsyis to
not commit yourself to formatting details too early.
One of the advantages of formatting packages like
—ms is that they permit you to delajecisionsto the
last possible moment. Indeed, until a document is
printed, it is not even decided whether it will be
typeset or put on a line printer.

As a rule of thumb, for all but the most trivial
jobs, you should type a documenttermsof a setof
requests likePP, and then define them appropriately,
eitherby using one of the canned packages (the better
way) or by defining your owmroff and troff com-
mands. As long as you have entered the texsome
systematicway, it can always be cleaned up and re-
formattedby a judicious combination of editing com-
mands and request definitions.

IV. PROGRAMMING

There will be no attempt made teachany of
the programming languages available adeéw words
of advice are in order.One of thereasonswhy the
UNIX system is a productiv@rogrammingenviron-
ment is that there is alreadyrigh set of tools avail-
able, and facilities like pipes, I/O redirection, and the
capabilitiesof the shell often make it possible to do a
job by pasting together programs that already exist
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicatedoperations out of spare parts that already
exist. For example, the firstiraft of the spell pro-
gram was (roughly)

cat ... collect the files

gtr ... put each word on a new line
atr ... delete punctuation, etc.
Osort into dictionary order

Ouniq discard duplicates

Ocomm print words in text

but not in dictionary

More pieces have been added subsequehtly this
goes a long way for such a small effort.

The editor can be made to do things that would
normally require special programs on otlsgistems.
For example,to list the first and last lines of each of
a set of files, such a& book, youcould laboriously
type

ed

e chapl.l
1p

$p

e chapl.2
1p

$p

etc.

But you can do the job much moeasily. One way
is to type

Is chap* >temp

to get the list of flenames into a fileThen edit this

file to make the necessary series of editing commands
(using the global commands efl), and write itinto
script. Now the command

ed <script

will producethe same output as the laborious hand
typing. Alternately (and more easilyyou can use
the fact that the shell will perform loops, repeating a
set of commands over and over agfm a set of
arguments:

for i in chap*
do

ed $i <script
done

This sets the shell variablego each file namén turn,
then doesthe command. You can type this command
at the terminal, or put it in a file for later execution.

Programming the Shell

An option often overlooked by newcomersthsit
the shell is itself a programming language, with vari-
ables, control flowif-else, while, for, case), subrou-
tines, and interrupt handlingSince there are many

- 12 -

building-block programs,you can sometimes avoid
writing a new program merelpy piecing together
some of the building blocks with shell command files.

We will not go into any details here; examples
and rules can be found #n Introduction tothe UNIX
Shell by S. R. Bourne.

Programming in C

If you are undertaking anything substantial, C is
the only reasonable choice of programming language:
everything in theUNIX system is tuned to it.The
systemitself is written in C, as are most of the pro-
grams that run on itlt is also a easy language use
once you get started.C is introduced andfully
described inThe C Programming.anguageby B. W.
Kernighanand D. M. Ritchie (Prentice-Hall, 1978).
Several sections of the manuagscribethe system
interfaces,that is, how you do /O and similar func-
tions. ReadUNIX Programmingfor more compli-
cated things.

Most input and output in C is bekandledwith
the standardl/O library, which provides a set of 1/O
functions that exist in compatible form on most
machines that have C compilerdn general, it's
wisestto confinethe system interactions in a program
to the facilities provided by this library.

C programs that don’'t depend too much on spe-
cial features oUNIX (suchas pipes) can be moved to
other computersthat have C compilers.The list of
such machines grows daily; in addititmthe original
PDP-11, it currently includes at least Honeywell 6000,
IBM 370, Interdata 8/32, Data General Noead
Eclipse, HP 2100, Harris /7, VAX 11/780, SEL 86,
and Zilog Z80. Calls to the standard I/O libraryill
work on all of these machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential por-
tability problems, and detectserrors such as
mismatchedargument types and uninitialized vari-
ables.

For larger programs (anythinghose sourceis
on more than one filejnake allows you to specify
the dependencies among the source fiedthe pro-
cessing steps needed to make a wewsion;it then
checks the times that thgieceswere last changed
and does the minimal amount of recompiliogcreate
a consistent updated version.

The debuggerdb is useful for digging through
the dead bodies of C programs, but is rathed to
learn to use effectively. The most effective debug-
ging tool is still careful thought, coupledith judi-
ciously placed print statements.

The C compiler provides a limited instrumenta-
tion service, so you can find out where programs
spend their time and whalartsare worth optimizing.
Compile the routinesvith the —p option; after the test
run, useprof to print an executioprofile. The com-

mandtime will give you the gross run-time statistics
of a program, but they areot super accurate or
reproducible.

Other Languages

If you haveto use Fortran, there ateo possi-
bilities. You might consider Ratfor, whicgivesyou
the decentcontrol structures and free-form input that
characterizeC, yet lets you write code that is still
portable to other environments.Bear in mind that
UNIX Fortran tends to produce large and relatively
slow-running programs. Furthermore, supporting
software likeadb, prof, etc., are all virtually useless
with Fortran programs.There may also bea Fortran
77 compiler on your system. If so, this is a viable
alternativeto Ratfor, and has the non-trivial advan-
tage that it is compatible with C and relatptb-
grams. (The Ratfor processor and C tools can be
used with Fortran 77 too.)

If your application requires you to translate a
language into a set ddctions or anotherlanguage,
you are in effect building aompiler,thoughprobably
a small one. In that case, you should be using the
yacc compiler-compiler, which helps you devel@p
compiler quickly. The lex lexical analyzer generator
does the same job for the simplanguageghat can
be expressed as regular expressioliscan beused
by itself, or as a front end to recognizguts for a
yacc-based programBoth yacc andlex require some
sophistication to use, but the initial effat learning
them can be repaidmany times over in programs that
are easy to change later on.

Most UNIX systems also makavailable other
languagessuch as Algol 68, APL, Basic, Lisp, Pas-
cal, and Snobol. Whether these are usefdepends
largely on the local environmentif someonecares
aboutthe languageand has worked on it, it may be in
good shape. If not, the odds are strong that it will be
more trouble than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. RitchieThe UNIX
Programmer's Manual, Bell Laboratories, 1978.
Lists commands, system routines and interfaces, file
formats, and some of thenaintenanceprocedures.
You can't live without this, although you will prob-
ably only need to read section 1.

Documents for Use with theNIX Time-sharing Sys-
tem. Volume 2 of the Programmer's ManualThis
contains more extensive descriptions of major com-
mands, and tutorials anekferencemanuals. All of
the paperdlisted below are in it, as are descriptions of
most of the programs mentioned above.

D. M. Ritchie and K. L. Thompson, “Th&JNIX
Time-sharing System,” CACMJuly 1974. An over-

13-

view of the system, for people interested in operating
systems. Worth reading by anyonaho programs.
Contains a remarkable number afe-sentencebser-
vations on how to do things right.

The Bell System Technical Journal (BSTJ) Special
Issue onUNIX, July/August, 1978, contains many
papers describing recent developments, and some
retrospective material.

The 2nd International Conference ofoftware
Engineering (October, 1976) contaiseveral papers
describing the use ofhe Programmer’'sWorkbench
(PWB) version ofUNIX.

Document Preparation:

B. W. Kernighan, “A Tutorial Introduction to the
UNIX Text Editor” and “Advanced Editing on
UNIX,” Bell Laboratories, 1978.Beginnersneedthe
introduction; the advanced material will help you get
the most out of the editor.

M. E. Lesk, “Typing Documentson UNIX,” Bell
Laboratories, 1978.Describesthe —ms macro pack-
age, which isolates the novice from the vagaries of
nroff and troff, and takes care afost formatting
situations. If this specific packagésn't availableon
your system, something similar probably is.The
most likely alternative is thewB/UNIX macro pack-
age—mm; see your local guru if you usWVB/UNIX.

B. W. Kernighan and L. LCherry, “A Systemfor
Typesetting Mathematics,” Bell Laboratories Com-
puting Science Tech. Rep. 17.

M. E. Lesk, “Tbl — A Program to Formatables,”
Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., “NROFF/TROFF User’'s Manual,”
Bell Laboratories CSTR 54, 197&roff is the basic
formatter used by-ms, egn andtbl. The reference
manual is indispensable if you are goitmwrite or
maintain these or similar program8ut start with:

B. W. Kernighan, “A TROFF Tutorial,” Bell
Laboratories,1976. An attempt to unravethe intrica-
cies oftroff.

Programming:

B. W. Kernighan and D. M. Ritchi&he C Program-
ming Language, Prentice-Hall, 1978. Contains a
tutorial introduction, complete discussions of all
language features, and the reference manual.

B. W. Kernighan and D. M. Ritchie,UNIX Program-
ming,” Bell Laboratories, 1978.Describeshow to
interface with the system from @rograms: I/O calls,
signals, processes.

S. R. Bourne, “An Introduction to theNiX Shell,”
Bell Laboratories, 1978.An introduction and refer-
ence manual for the Versioi shell. Mandatory
reading if you intend to makeffective use of the
programming power of this shell.

S. C. Johnson, “Yacc — Yet Another Compiler-
Compiler,” Bell Laboratories CSTR 32, 1978.

M. E. Lesk, “Lex — A Lexical Analyzer Genera-
tor,” Bell Laboratories CSTR 39, 1975.

S. C. Johnson, “Lint, a C Program Checker,” Bell
Laboratories CSTR 65, 1977.

S. I. Feldman, “MAKE — A Program for Maintain-
ing Computer Programs,” BelLaboratoriesCSTR
57, 1977.

J. F. Maranzano and S. R. Bourne, “A Tutorial Intro-
duction to ADB,” Bell Laboratories CSTR2, 1977.
An introduction to a powerful butomplexdebugging
tool.

S.I. Feldman and P. J. Weinberger, “A Portable For-
tran 77 Compiler,” Bell Laboratories1978. A full
Fortran 77 foluNIX systems.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on thesNixT operating system is done with the text-edéadr
This memorandum is a tutorial guide to help beginners get started with text editing.

Although it doesnot cover everything, it does discuss enough for most users’ day-
to-day needs. This includes printing, appending, changing, deleting, moving and
inserting entire lines of text; reading and writing filesintext searchingand line
addressingthe substitute command; the global commands; and the use of special char-
acters for advanced editing.

September 21, 1978

TUNIX is a Trademark of Bell Laboratories.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Ed is a “text editor”, that is, an interactive pro-
gram for creatingand modifying “text”, using direc-
tions provided by a user at a terminalThe text is
often a document like this one, or a program or
perhaps data for a program.

This introduction is meant to simplifiarninged.
The recommended way to leaed is to read this
document, simultaneously usingd to follow the
examples, then to read the description in section | of
the UNIX Programmer’s Manualall the while experi-
menting withed. (Solicitation of advice from experi-
enced users is also useful.)

Do the exercises!They cover materiahot com-
pletely discussed in the actusééxt. An appendix
summarizes the commands.

Disclaimer

This is an introductionand a tutorial. For this
reason,no attemptis made to cover more than a part
of the facilities thated offers (although this fraction
includes the most useful and frequently used parts).
When you have mastered the Tutorial, tAdvanced
Editing onUNIX. Also, thereis not enough space to
explain basicdUNIX procedures.We will assumethat
you know how tolog on to UNIX, and that you have
at leasta vague understanding of what a file Bor
more on that, readNIX for Beginners.

You must also know what charactertype asthe
end-of-line on your particular terminalThis charac-
ter is the RETURN key on most terminals.
Throughout, we will refer tdhis characterwhatever
it is, aSRETURN.

Getting Started

We'll assume that you haviogged in to your
system and it has just printed tipeompt character,
usually either & or a%. The easiest way to ged
is to type

ed (followed by a returm))

You are now ready tgo — ed is waiting for you to
tell it what to do.

Creating Text — the Append command ‘‘a”’

As your first problem, suppose yeoantto create
some text starting from scratcliPerhaps you arg/p-
ing the very first draft of a paper; clearlywill have
to start somewhere, and undergo modifications later.
This sectionwill show how to get some text in, just
to get started. Later we’ll talk about how to change
it.

When ed is first started, it igatherlike working
with a blank piece of paper there is no text or
information present. This must be supplied by the
person usinged; it is usually done by typing in the
text, or by reading it inteed from a file. We will
startby typing in some text, and return shortly to how
to read files.

First a bit of terminology.In ed jargon, the text
being worked on is said to be “kept @& buffer.”
Think of the buffer as a work space, if you like, or
simply as the information that you are goitg be
editing. In effect the buffer is like the piece of paper,
on which we will write things, then chang®me of
them, and finally file the whole thing away for
another day.

The user telled what to do to his text by typing
instructions called “commands.” Most commands
consist of a single letter, which must be typied
lower case. Each command is typed on separate
line. (Sometimes the command is precededirtfgr-
mation about what line or lines déxt are to be
affected— we will discuss these shortly.Ed makes
no response to most commarnédshere is no prompt-
ing or typing of messages like “ready”.(This
silence is preferred by experienced users, but some-
times a hangup for beginners.)

The first command iappend,written as the letter
a

all by itself. It means “append (or add) text lines to
the buffer, as | type them in.” Appending is rather
like writing fresh material on a piece of paper.

Soto enter lines of text into the buffer, just type
an a followed by aRETURN, followed by the lines of
text you want, like this:

a

Now is the time

for all goatimen

to come to the @d of their party.

The only way to stop appending is to type a line
that contains only a periodThe “.” is used to tell
ed that you have finished appendingEven experi-
enced users forget that terminating’ ‘sometimes. If
ed seemsto be ignoring you, type an extra line with
just “.” on it. You may then findyou've added
somegarbageinesto your text, which you'll have to
take out later.)

After the append command has bedone, the
buffer will contain the three lines

Now is the time
for all goatimen
to come to the aid of their party.

The “a” and “.” aren'tthere, because they are not
text.

To add more text to what yoalready have, just
issue anothea command, and continue typing.

Error Messages — **?"’

If at any time you make an error ithe com-
mands you type ted, it will tell you by typing

?

This is about as cryptic as it can be, but with practice,
you can usually figure out how you goofed.

Writing text out as a file — the Write command
o

It's likely that you'll want to save your text for
later use. To write out the contents of thmuffer onto
a file, use thevrite command

w

followed by the filename you want tarite on. This
will copy the buffer's contents ontthe specifiedfile
(destroyingany previous information on the file)To
save the text on a file namgahk, for example, type

w junk

Leave a spacketweenw and the file nameEd will
respond by printing the numbef characterst wrote
out. In this caseedwould respond with

68

(Remembethat blanksand the return character at the
end of eachline are included in the character count.)
Writing a file just makes a copy of the textthe
buffer’'s contentsare not disturbed, so you can go on
adding lines to it. This is an important pointEd at
all timesworks on a copy of a file, not the file itself.
No change in the contents of a file takes plangl

you give aw command. (Writing out the text onto a
file from time to time as it is being createda good
idea, since if the system crashes or if yoakesome
horrible mistake, you will lose all the text in the
buffer but any text thatwas written onto a file is rela-
tively safe.)

IXPAE

Leaving ed — the Quit command ‘‘q

To terminate a session witkd save the text
you're working on by writing it onto a file using the
w command, and then type the command

q

which stands foiquit. The system willrespondwith
the prompt character$(or %). At this point your
buffer vanishes, with all its textyhich is why you
want to write it out before quitting.t

Exercise 1:
Entered and create some text using

a
Lext . ..

Write it out usingw. Thenleaveed with the g com-
mand, and print the fileto see that everything
worked. (To print a file, say

pr filensme
or
cat file neme

in response to the prompt charactdry both.)

Reading text from a file — the Edit command *‘¢”

A commonway to get text into the buffer is to
read it from a filein the file system. This is what
you do to edit text that yosavedwith the w com-
mand in a previous sessioriThe edit commande
fetches the entire contents of a file into the buffer.
So if you had saved the three lines “Now is the
time”, etc., with aw command in an earliesession,
the ed command

e junk
would fetch the entire contents of the fijeink into
the buffer, and respond

68

which is the numbeof charactersin junk. If any-
thing was already in the buffer, it is deleted first.

If you use thee commandto read a file into the
buffer, thenyou neednot use a file name after a sub-
sequentw command;ed remembers the ladiie name

T Actually, ed will print ? if you try to quit without writing.
At that point, write if you want; if not, another will get you
out regardless.

used in ane command, andv will write on this file.
Thus a good way to operate is

ed

e file

[editing session]
w

q

This way, you can simply say from time to time,
andbe secure in the knowledge that if you got the file
nameright at the beginning, you are writing into the
proper file each time.

You can find out at any time what file nameis
rememberingby typing thefile commandf. In this
example, if you typed

f
ed would reply

junk

Reading text from a file — the Read command *‘r”’

Sometimesyou wantto read a file into the buffer
without destroying anything that is already there.
This is done by theead commandr. Thecommand

r junk

will read the filejunk into the buffer; it adds it to the
end of whatever is already in the buffego if you
do a read after an edit:

e junk
r junk

the buffer will contain two copies of the text (six
lines).

Now is the time
for all goatimen
to come to the @id of their party.
Now is the time
for all goatimen
to come to the @id of their party.

Like thew and e commandsyr prints the number of
charactergead in, after the reading operation is com-
plete.

Generally speaking, is much less used than

Exercise 2:

Experiment with thee command- try reading
and printing various files.You may getan error
?name, wherename is the name of a file; this means
that the file doesn’'t exist, typically because you
spelled the file name wrong, or perhaps that are
not allowed to read or write itTry alternately read-
ing and appending to see that they waiknilarly.
Verify that

ed filerame

is exactly equivalent to

ed
e filersame

What does
f filensame

do?

Printing the contents of the buffer — the Print
command ‘‘p”’

To print or list the contents of the buffer (or parts
of it) on the terminal, use the print command
p

The way this is done is as followsSpecify the lines
whereyou want printing to begin and where you want
it to end, separated by@mma,and followed by the
letter p. Thus to print the first two line®f the
buffer, for example, (that is, lines 1 through 2) say

1.2p

Ed will respond with

(starting line=1, ending line=2 p)

Now is the time
for all goatimen

Suppose you want to prirdll the lines in the
buffer. You could usel,3p as above ifyou knew
there were exactly 3 lines in the buffeBut in gen-
eral, you don’'t know how many there are, so what do
you use for the ending line number2d provides a
shorthand symbol for “line number of last line in
buffer” — the dollar sigr. Use it this way:

1,%$p

This will print all the linesin the buffer (line 1 to last
line.) If you want to stop the printing before it is
finished, push th®EL or Delete keyed will type

?
and wait for the next command.
To print thelast line of the buffer, you could use
$.%5p
but ed lets you abbreviate this to
$p

You can print any single line by typing the line
number followed by @. Thus

1p
produces the response
Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate evefurther: you
can print any single line by typingust the line
number— no need to type the lettpr So if you say

$

edwill print the last line of the buffer.
You can also us& in combinations like

$-1,%p

which prints the last two lines of the buffefThis
helps when you want to see how far you gotyp-

ing.

Exercise 3:

As before, create some text using theommand
and experiment with the command. Youwwill find,
for example, that you can't print line 6r a line
beyond the end of the buffer, and that attempts to
print a buffer in reverse order by saying

3,1p

don’t work.

Thecurrent line— ‘“‘Dot’ or “*.”

Supposeyour buffer still contains the six lines as
above, that you have just typed

1,3p

anded has printed the three lines fgou. Try typing
just

p (no line mumiters)
This will print
to come to the @id of their party.

which is the third line of the bufferln fact it is the
last (most recent) line that you have done anything
with. (You just printed it!) You can repeat thip
commandwithout line numbers, and it will continue
to print line 3.

The reason ighat ed maintains a record of the
last line that you did anything to (in this case, line 3,
which you just printed) so that it can be usestead
of an explicit line number.This most recentline is
referred to by the shorthand symbol

. (pronouced “dlot”)).

Dot is a line number in the same way tlfais; it
means exactly “the current line”, oloosely, “the
line you most recently did something to.You can
use it in several ways one possibility is to say

-$p

This will print all the linesfrom (including) the
current line to the end of the buffetn our example
these are lines 3 through 6.

Some commands change the vabfedot, while
others do not. The p command sets dot to the
numberof the last line printed; the last command will
set both. and$ to 6.

Dot is most useful wherused in combinations
like this one:

41 (or equivalently, -+1p)

This means"print the next line” and is a handy way
to step slowly through a bufferYou can also say

—1 (or —1p)

which means “printthe line beforethe current line.”
This enablesyou to go backwards if you wish.
Another useful one is something like

—3—1p
which prints the previous three lines.

Don't forget that all of these changlee value of
dot. You can find out what dot is at any time by typ-

ing

Ed will respond by printing the value of dot.

Let's summarize some things about thecom-
mand and dot.Essentiallyp can be preceded by 0, 1,
or 2 line numbers. If there is no line number given,
it prints the “current line”, theline thatdot refersto.

If thereis oneline number given (with or without the
letter p), it prints that line (and dds setthere); and

if there are two line numbers, it prints all the lines in
that range (and sets dot to the last line printedlIf
two line numbers are specified tHest can't be
bigger than the second (see Exercise 2.)

Typing a single return wilcauseprinting of the
next line— it's equivalent to.+1p. Try it. Try typ-
ing a—; you will find that it's equivalent to-1p.

Deleting lines: the *‘d’’ command

Suppose you want to get rid of the three extra
lines in the buffer. This is done by theleletecom-
mand

d

Except thatd deletes lines instead of printing them,
its action is similarto that of p. The lines to be
deleted are specified farexactly as they are fq:

starting line, ending lined
Thus the command
4,%d

deleteslines 4 through the endThere are now three
lines left, as you can check by using

1,%p

And notice that$ now is line 3! Dot is setto the
next line after the last line deleted, unless the last line
deletedis the lastline in the buffer. In that case, dot
is set to$.

Exercise 4:

Experiment witha, e, r, w, p andd until you are
sure that you know what they do, and until you
understand how do$, and line numbers are used.

If you are adventurous, try using line numbers
with a, r andw as well. You will find that a will
append linesafter the line number that you specify
(rather than after dot); thatreads a file irafter the
line numberyou specify (not necessarily at the end of
the buffer); and thatv will write out exactly the lines
you specify, not necessarily the whole buffefhese
variations are sometimes handyor instanceyou can
insert a file at the beginning of a buffer by saying

Or file meme

andyou canenterlines at the beginning of the buffer
by saying

Oa
.. oWtext. .

Notice that.w is very different from

w

M odifying text: the Substitute command *‘s”

We are now ready to try one of the most impor-
tant of all commands the substitute command

S

This is the command that is usedcteangeindividual
words or letters within a line or group of lineslt is
what you use, for example, for correcting spelling
mistakes and typing errors.

Suppose that by a typing error, line 1 says
Now is th time

— the e hasbeen left offthe You can uses to fix
this up as follows:

1sithithe/

This says:“in line 1, substitute for the charactets
the charactershe” To verify that it works éd will
not print the result automatically) say

p
and get
Now is the time

which is what you wanted.Notice that dot must have
beensetto the line where the substitution took place,
since thep commandprinted that line. Dot is always
set this way with the command.

The general way to use the substitute command is

starting-line, ending-linesichange thi&o thid

Whateverstring of characters is between the first pair

of slashes is replaced by whatever is betwésn
second pair, irall the linesbetweenstarting-line and

ending-line. Only the first occurrence on eathe is

changed, however.If you want to changeevery

occurrence, see Exercise 5. The rules for line
numbers are the same as thoseoexcept that dot
is set to the last line change@ut thereis a trap for

the unwary: if no substitutiomook place, dot is not

changed. This causes an err@ as a warning.)

Thus you can say

1 $s/speling/spelliing/

and correct the first spelling mistake on each lime
the text. (This is useful for people who aoensistent
misspellers!)

If no line numbers argyiven, the s command
assumes we mean “make the substitution on line
dot”, so it changes things only on the current line.
This leads to the very common sequence

sisomething/something elselp

which makes some correction ¢ime currentline, and
then prints it, to make sure it worked out rightlf it

didn’t, you can try again.(Notice that therés ap on
the same line as the command. With few excep-
tions, p can follow any commandno other multi-

command lines are legal.)

It's also legal to say
slh. ..l

which means“change the first string of characters to
‘“nothing’, i.e., remove them. This is useful for
deleting extra words in a line or removirgxtra
letters from words.For instance, if you had

Nowxx is the time
you can say

sixx/Ip
to get

Now is the time

Notice that// (two adjacent slashes) means “no char-
acters”, not a blank. There is a difference! (See
below for another meaning &f)

Exercise 5:

Experiment with the substitute commandSee
what happens if you substitute feomeword on a
line with several occurrences of that word-or
example, do this:

a
the ather side aof the coin
slthefon thelp

You will get

om the ather side af the coin

A substitute command changes only the first
occurrence of the first stringYou can changeall
occurrences by adding @ (for “global”) to the s
command, like this:

sl...l...Igp

Try other characters instead siashesto delimit the
two setsof characters in the command- anything
should work except blanks or tabs.

(If you get funny results using any tfe charac-
ters

.8 [O

read the section on “Special Characters™.)

&

/n

With the substitute command mastered, you can
move on to another highly importamea of ed —
context searching.

Context searching— *‘/ . ..

Suppose you have the original three line text in
the buffer:

Now is the time
for all goatimen
to come to the aid of their party.

Supposeyou want to find the line that contaitiseir

so you can changé to the Now with only three
lines in the buffer, it's pretty easy tkeep track of
what line the wordheir is on. But if the buffer con-
tained several hundred lines, and you'd been making
changes,deleting and rearranging lines, and so on,
you would no longer really knowwhat this line
number would be. Context searching is simply a
method of specifying the desired line, regardless of
what its number is, by specifying some context on it.

The way to say “search for a line that contains
this particular string of characters” is to type

Istring of characters we want to fihd
For example, thed command
Itheir/

is a context search which is sufficient to find the
desiredline — it will locate the next occurrence of the
characters between slashes (“their”)t also setsdot

to that line and prints the line for verification:

to come to the aid of their party.

“Next occurrence” meanghat ed starts looking for
the string at line.+1, searches to the end dfie
buffer, then continues at line 1 and searcheéine
dot. (That is, the searchwraps around” from $ to
1.) It scansall the lines in the buffer until it either
finds the desired line or gets back to dot agaif.the
given string of charactersan’t be found in any line,
edtypes the error message

?

Otherwise it prints the line it found.

You can do both the search for the desired line
and a substitution all at once, like this:

Itheir/sitheir/thelp
which will yield
to come to the @d of the party.

Therewere three parts to that last commarhntext
search for the desired line, make thabstitution,
print the line.

The expressioritheir/ is a context search expres-
sion. In their simplest form, all context search
expressionsare like this — a string of characters sur-
rounded by slashes. Context searches are inter-
changeable with line numbers, so tteanbe usedby
themselvedo find and print a desired line, or as line
numbers for some other command, l&ke Theywere
used both ways in the examples above.

Suppose the buffer contains three familiar
lines

Now is the time
for all goatimen
to come to the a@d of their party.

Then theed line numbers

/Now/+1
/goaii
/party/—1

are all contextsearch expressions, and they all refer
to the same line (line 2)To make a change in line 2,
you could say

/Now/+1slgoabbaii
or

/goatisfoatibat
or

/party/—1slgoatibal

The choice is dictated onlpy convenience. You
could print all three lines by, for instance

/Now/ Jparty/p
or
/Now/ ,/Now/+2p

or by any number of similar combinations’he first
one of these might be better if you don't know how
many lines are involved. (Of course, if there were
only three lines in the buffer, you'd use

1,%p

but not if there were several hundred.)

The basicrule is: a context search expression is
the same a@ line number, so it can be used wher-
ever a line number is needed.

Exercise 6:

Experiment with context searchingTry a body
of text with several occurrences thfe samestring of
charactersand scanthrough it using the same context
search.

Try using context searches as line numierghe
substitute, print anddelete commands. (They can
also be used with, w, anda.)

Try context searching usin@text? instead of
ltext/. This scans lines in the buffer in reves@er
rather than normal.This is sometimes useful if you
go too far while looking for some string oharacters
— it's an easy way to back up.

(If you get funny results with any of theharac-
ters

.8 [O

read the section on “Special Characters™.)

&

Ed provides a shorthand for repeating a context
search for the samstring. Forexample,the ed line
number

/gtring/

will find the next occurrence afring. It often hap-
pensthat this is not the desired line, so the search
must be repeatedThis can be done by typing merely

I

This shorthand stands for “the most recently used
context searchexpression.” It can also be used as
the first string of the substitute command, as in

/stinglls/sting?!

which will find the next occurrenceof stringl and
replace it bystring2. This can save a lot of typing.
Similarly

?

means “scan backwards for the same expression.”

Change and Insert — ‘‘c’’ and *‘i’’
This section discusses thkhangecommand
c

which is usedto change or replace a group of one or
more lines, and thsert command

i
which is usedfor inserting a group of one or more
lines.

“Change”, written as

Cc

is used to replace a number of lines with different
lines, which are typed in at the terminal.For exam-
ple, to change linest1 through$ to something else,
type

+1.%c
. . .type the lines of text you want here .

The linesyou type between the command and the
will take the place of the original lines between start
line and end line.This is most usefuin replacinga
line or several lines which have errors in them.

If only one line is specifiedn the ¢ command,
then just that line is replaced. (You can type in as
many replacement lines as ytike.) Notice the use
of . to endthe input — this works just like the in
the append command and must apgsaitself on a
new line. If no line number is given, line dot is
replaced. The value of dot is set to the ldite you
typed in.

“Insert” is similar to append- for instance
/string/i
. . .type the lines to be inserted here .

will insert the given texbeforethe next line that con-
tains “string”. The text betweem and. is inserted
before the specified line. If no line number is
specified dot is used.Dot is set to thelast line

inserted.

Exercise 7:
“Change” is rather like a combination of delete
followed by insert. Experiment to verify that

start, endd
i
LLuotext . L.

is almost the same as

start, endc
LLutext . L.

These are notprecisely the same if line$ gets
deleted. Check this out.What is dot?

Experiment witha and i, to see that they are
similar, but not the sameYou will observe that

line-numbera
L.oWGtext. L.

appendsafter the given line, while

line-numberi
..oWtext. L.

inserts beforeit. Observe that if no linewumberis

-8-

given, i inserts before line dot, whila appends after
line dot.

Moving text around: the ‘‘m’’ command

The move commandn is used for cutting and
pasting— it lets you move a group of lines from one
place to another inhe buffer. Supposeyou want to
put the first three lines of the buffer at the end
instead. You could do it by saying:

13w temp
$r temp
1,3d

(Do you see why?)but you cando it a lot easier
with them command:

1.3mds
The general case is
start line, end linam after this line

Notice that there is a third lin® be specified— the
place where the moved stuff gets p@f course the
lines to be moved can be specified lepntext
searches; if you had

First paragraph

em of first paragraph.
Second paragraph

end of second paragraph.
you could reverse the two paragraphs like this:
/Second! ,/end of seconadfm/First/— 1

Notice the—1. the moved text goesafter the line
mentioned. Dot gets set to the last line moved.

The global commands *‘g’’ and *‘v"’

The global commandg is usedto execute one or
more ed commands on all those lines in the buffer
that match some specified strinfor example

g/peling/p
prints all lines that contaipeling. More usefully,

g/peling/s/peliing/gp

makes the substitution everywhere on the lithen
prints each corrected linecCompare this to

1 $is/peling/pelling/gp

which only prints the last line substitutedAnother
subtle difference is that thgg command does ndive
a? if peding is not found where the command will.

There may be several comman@scluding a, c,
i, r, w, but notg); in that case, every line except the
last must end with a backslash

ghoxx/ —1slabddef/in

-+2slghi/jkl/n

—2.p
makeschangesn the lines before and after each line
that containsxxx, then prints all three lines.

The v command is the same gs except that the
commands are executed on evédine that does not
match the string followingy:

v/ d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that thingsst don’t work
right when you used sonwharacterdike ., 00 $, and
others in context searches and the substitam-
mand. The reasonis rather complex, although the
cure is simple.Basically, ed treats these characters as
special, with special meaningskor instance,in a
context search or the first string of the substiaen-
mand only,. means “any character,” not a period, so

Ixyl

means “a line withan x, any character,and ay,”
not just “a line with anx, a period, anca y.” A
complete list of the speciaharacterghat can cause
trouble is the following:

~ L% [O\

Warning: The backslash charactkiis specialto ed.
For safety's sake, avoid it where possiblH. you
haveto useone of the special characters in a substi-
tute command,you can turn off its magic meaning
temporarily by preceding it with the backslashhus

sA\.\Tbackslash dut star/

will change\.O0 into “backslash dot star”.

Here is a hurried synopsis of the other special
characters. First, the circumfleX signifies the begin-
ning of a line. Thus

[I"string/
finds string only if it is at thebeginningof a line: it
will find

string
but not

the sfring...

The dollar-sign $ is just the opposite of the
circumflex; it means the end of a line:

Isting®

will only find an occurrencef string that is at the
end of some line.This implies, of course, that

["string®

will find only a line that contains justring, and
r$l
finds a line containing exactly one character.
The character, as we mentioned above, matches
anything;
Ixyl
matches any of
X+y
x-y
Xy
X.y

This is useful in conjunction with] which is a

repetition character;ald is a shorthand for “any
number ofa’s,” so .0 matches any number of any-
things. This is used like this:

sl.asuff/
which changes an entire line, or
s.o/

which deletes all characters in the line up to and
including the last comma(Since.d finds the longest
possible match, this goes up to the last comma.)

[is used with] to form “character classes’for
example,

/[0123456 D89

matches any single digit any one of the characters
inside the braces will cause a matchihis can be
abbreviated t¢0-9].

Finally, the& is another shorthand characterit
is used only on the right-hand past a substitute
commandwhereit means “whatever was matched on
the left-hand side”. It is used to save typingSup-
pose the current line contained

Now is the time

and you wanted to put parentheses aroiindYou
could just retype the line, btiiis is tedious. Or you
could say

sTid
SIS/

using your knowledgeof © and $. But the easiest
way uses thé&:

S.0(&)/

This says “match the whole line, and replace it by
itself surrounded by parentheses.The & can be
used several times in a line; consider using

sl.0&? &/
to produce
Now is the time? Now is the timell

You don't have to match the whole line, of
course: if the buffer contains

the end of the world
you could type
Iworld/g/& is at haml/
to produce
the end of the world is at hard

Observe this expression carefully, for it illustrates
how to take advantage a&d to save typing. The
string /world/ found the desired line; the shorthatid
found the same word in the line; and thesaves you
from typing it again.

The & is a special character only within the
replacement text of a substitute command, andnbas
specialmeaningelsewhere.You can turn off the spe-
cial meaning o& by preceding it with &

slanpersand/\&//

will convertthe word “ampersand” into the literal
symbol & in the current line.

Summary of Commands and Line Numbers

The general form ofd commands is the com-
mand name, perhaps preceded dne or two line
numbers, and, in the case &fr, andw, followed by
a file name. Only one command isllowed per line,
but ap commandmay follow any other command
(except fore, r, w andq).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specifiedyppending
continues until. is typed on a new lineDot is setto
the last line appended.

c. Change the specified lines to the new tekich
follows. The new lines are terminated by.aas with
a. If nolines are specified, replace line ddbot is
set to last line changed.

d: Delete the lines specifiedlf none are specified,
deleteline dot. Dot is set to the first undeleted line,
unless$ is deleted, in which case dot is set$to

e Edit newfile. Any previous contents of the buffer
are thrown away, so issuenabeforehand.

f: Print rememberedilename. If a name followsf
the remembered name will be set to it.

g: Thecommand
g/---/commands

will execute the commands on thdgees that contain
---, which can be any context search expression.

i: Insert lines before specified line (or dot) util is
typed on a new lineDot is set to last line inserted.

-10 -

m: Move lines specified to aftéhe line namedafter
m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print line
dot. A single line number is equivalent tbne-
numberp. A single return prints+1, the next line.

g: Quit ed Wipes out all text in buffer if yowgive
it twice in a row without first giving & command.

r: Read a file into buffer (at end unlespecified
elsewhere.) Dot set to last line read.

s. Thecommand
s/stingl/string?

substitutes the charactesgingl into string2 in the
specifiedlines. If no lines are specified, make the
substitutionin line dot. Dot is set to last line in
which a substitutiontook place, which means that if
no substitution took place, dot is not changed.
changes only the first occurrencesfingl on a line;
to change all of them, typednafter the final slash.

v: Thecommand
v/---/commands
executescommands on those lines thatlo not con-
tain ---.
w: Write out buffer onto a file.Dot is not changed.

.=: Print value ofdot. (= by itself prints the value of
$.)

I Theline
lcommand-line

causescommand-line to be executed as@NIX com-
mand.

/-----[: Context search.Search for next line which
contains this string of character®rint it. Dot is set
to the line where string wafound. Searchstartsat

+1, wraps around fron$ to 1, and continuet® dot,

if necessary.

?-----?. Context search irreversedirection. Start
search at-1, scan to 1, wrap around $

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make effec-
tive use of theynixt facilities for preparingand editing text. It providesexplanations
and examples of

. special characters, line addressing and global commands in theegditor

. commandsfor “cut and paste” operations on files and parts of files, including
the mv, cp, cat andrm commands, and the w, m andt commands of the edi-
tor;

. editing scripts and editor-based programs {ikep andsed.

Although the treatmentis aimed at non-programmers, new users with any back-
ground should find helpful hints on how to get their jobs done more easily.

August 4, 1978

TUNIX is a Trademark of Bell Laboratories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although unixT provides remarkably effective
tools for text editing, that by itself is no guarantee
that everyone will automatically make the most effec-
tive use of them. In particular, people who are not
computer specialists — typists, secretaries, casual
users— often use the system less effectively than
they might.

This document is intended as sequelto A
Tutorial Introduction to the UNIXText Editor [1],
providing explanationsand examples of how to edit
with less effort. (You should also be familiar with
the material iNnUNIX For Beginners[2].) Further
information on all commands discussed here can be
found inThe UNIX Programmer’s Manu8].

Examples are based asbservationsof users
and the difficulties they encounterTopics covered
include special characters in searches and substitute
commands|ine addressing, the global commands, and
line moving and copying.There arealso brief discus-
sions of effective use of related tools, like those for
file manipulation, and thosbasedon ed, like grep
andsed.

A word of caution. There is only one wayo
learn to use something, and that isuseit. Reading
a description is no substitufer trying something. A
paper like this one should give you idestsoutwhat
to try, but until you actually try something, you will
not learn it.

2. SPECIAL CHARACTERS

The editored is the primary interface to the
systemfor many people,so it is worthwhile to know
how to get the most out &fl for the least effort.

The next few sectionwill discuss shortcuts
and labor-savingdevices. Not all of these will be
instantly useful to any one person, of course, but a
few will be, and the others should give ymleasto
store away for future useAnd as always, until you
try these things, they will remaintheoretical
knowledge, not something you have confidence in.

TUNIX is a Trademark of Bell Laboratories.

The List command ‘I’

ed provides two commands for printing the
contents of the lines you're editingVlost people are
familiar with p, in combinations like

1,%p
to print all the lines you're editing, or
s/abc/def/p

to change ‘abc’ to ‘def on theurrentline. Less
familiar is thelist commandl (the letter I’), which
gives slightly more information thap. In particular,

I makes visible characters that are normally invisible,
such as tabs and backspacedf you list a line that
contains some of theskwill print each tab ag and
each backspace as This makes it much easier to
correct the sort of typing mistake that inserts extra
spaces adjacent to tabs, or inserts a backsfice
lowed by a space.

The | command also ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on multiple lines; eadprinted line exceptthe
last is terminated by backslash\, so you can tell it
was folded. This is useful for printing long lineen
short terminals.

Occasionally thé commandwill print in a line
a string of numbers preceded by a backslash, such as
\07 or \16. These combinations are used to make
visible characters that normally don't print, likerm
feed or vertical tab or bellEach such combination is
a single character. When you see such characters, be
wary — they may have surprisingneaningswhen
printed on some terminals.Often their presence
means that your finger slipped whiteu were typing;
you almost never want them.

The Substitute Command ‘s

Most of the next few sections will be taken up
with a discussion of theubstitutecommands. Since
this is the command for changing the content;of
vidual lines, it probably has the most complexity
any ed command,andthe most potential for effective
use.

As the simplest place to begin, recdle
meaning of a trailingg after a substitute command.

With

s/this/that/
and

s/this/that/g

the first one replaces tHist ‘this’ on the line with
‘that’. If there is more than one ‘this’ on the lirteg
second form with the trailing changesll of them.

Either form of thes commandcan be followed
by p or | to ‘print’ or ‘list’ (as described in the previ-
ous section) the contents of the line:

slthis/that/p
s/this/that/|
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly differerihings.
Make sure you know what the differences are.

Of course, anys command can be preceded by
one or two ‘line numbers’ to specify thete substitu-
tion is to take place on a group of lines. Thus

1,$s/mispell/misspell/

changes thdirst occurrence of ‘mispell’ to ‘misspell’
on every line of the file.But

1,$s/mispell/misspell/g

changesevery occurrencein every line (and this is
more likely to be what yowvantedin this particular
case).

You shouldalso notice that if you add @or |
to the end of any of these substitute commandsy
the last line that got changed will be printed, not all
the lines. We will talk later about how tgorint all
the lines that were modified.

The Undo Command ‘U’

Occasionallyyou will make a substitution in a
line, only to realize too late thétwasa ghastlymis-
take. The ‘undo’ commandi lets you ‘undo’ the last
substitution: the last line that was substituted can be
restored to its previous state by typing the command

u

The Metacharacter ‘.’

As you have undoubtedly noticed when you
use ed, certain characters have unexpected meanings
when they occurin the left side of a substitute com-
mand, or in a search for a particular lin the next
several sections, we will talk about these special char-
acters, which are often called ‘metacharacters’.

The first one is the period’.’ On the left side
of a substitutecommand, or in a search with /.../,] *
stands forany single character. Thus the search

Ix.yl

finds any line where‘x’ and 'y’ occur separated by a
single character, as in

X+y
X=y
Xoy
X.y

and so on.(We will useg to stand for a space when-
ever we need to make it visible.)

3l

Since .’ matches a single character, that gives
you a way to deal with funny characters printed by
Supposeyou have a line that, when printed with the
command, appears as

th07is

andyou want to get rid of th&07 (which represents
the bell character, by the way).

The most obvious solution is to try
sAO7//

but this will fail. (Try it.) The brute force solution,
which most people would now take, is to re-type the
entire line. This is guaranteed, and is actualjyite a
reasonable tactic if the line in questi@m't too big,
but for a very long line, re-typing is a boreThis is
where the metacharacter comes inhandy. Since
‘07’ really represents a single character, if we say

sithis/this/

the job is done.The ‘.’ matches thenysteriouschar-
acter between the ‘h’ and the ‘ivhatever it is.

[

Bear in mind thasince".
character, the command

sl

converts the first character on a line into a ‘;’, which
very often is not what you intended.

matches any single

As is true of many characteis ed, the .’ has
several meanings, depending on its conteitis line
shows all three:

sh/

The first " is a line number, the numbef the line
we are editing, which is called ‘lindot’. (We will
discuss line dot more in Secti@) The second'.’ is

a metacharactethat matches any single character on
that line. The third .’ is the only one that really is
an honest literal periodOn theright side of a substi-
tution, ‘. is not special. If you apply thiscommand
to the line

Now is the time
the result will be
.0w is the time

which is probably not what you intended.

The Backslash ‘\

Since a period means ‘any character’, ues-
tion naturally arises of what to do when you really
wanta period. For example, how do you convert the
line

Now is the time
into
Now is the time?

The backslast\’ does the job. A backslash turns off
any special meaning that the next character might
have; in particular,\\X converts the . from a ‘match
anything’ into a period, so you can usetdtreplace
the period in

Now is the time
like this:
sA./?/

The pair of characterd.’\is considered byd to be a
single real period.

The backslash can also be used when searching

for lines that contain a special characteBuppose
you are looking for a line that contains

.PP
The search
1.PP/
isn't adequate, for it will find a line like
THE APPLICATION OF ...
because the.” matches the letter ‘A’.But if you say
N.PP/

you will find only lines that containPP’.

The backslasican also be used to turn off spe-
cial meanings for characters other thdn For exam-
ple, consider finding a linghat containsa backslash.
The search

N

won't work, because the\'\isn't a literal ¥, but
instead means that the secondrf longer delimits
the search. But by preceding a backslastvith
another one, you can search for a litebakkslash.
Thus

N\

doeswork. Similarly, you can search for a forward
slash /" with

NI

The backslash turns off the meaniaf) the immedi-
ately following /' so that it doesn’t terminate the /.../
construction prematurely.

As an exercise, before readifigther, find two
substitute commands each of which will convert the
line

x\.\y
into the line

\x\y

Here are several solutions; verify thetch
works as advertised.

sA\.//
six..Ix/
sl..ylyl

A couple of miscellaneous notesabout
backslasheand special characterssirst, you can use
any characterto delimit the pieces of as command:
there is nothing sacred about slashéBut you must
use slashes for context searching:9r instancejn a
line that contains a lot of slashes already, like

llexec //sys.fort.go // etc...

you could use a colon as tdelimiter — to deleteall
the slashes, type

s:/:g
Second, if# and @ are your character erase
and line kill characters, you have type \# and\@;

this is true whether you're talking & or any other
program.

When you are adding text with or i or c,
backslash is not special, and you should only iput
one backslash for each one you really want.

The Dollar Sign ‘$

The next metacharacteithe ‘$’, stands for ‘the
end of the line’. As its most obvious use, suppose
you have the line

Now is the

and you wish to add the word ‘time’ to the endse
the $ like this:

s/$ltime/
to get
Now is the time

Notice that a space is needed before ‘time’ inghle-
stitute command, or you will get

Now is thetime

As another example, replatee secondcomma
in the following line with a period without altering
the first:

Now is the time, for all good men,

The command needed is

s/, Sk

The $ sign here provides contetd make specific
which comma we meanWithout it, of course, the
command would operate on the first comtoapro-
duce

Now is the time for all good men,

As another example, to convert
Now is the time

into
Now is the time?

as we did earlier, we can use

sl.$I?/

Like ‘.’, the ‘$’ hasmultiple meaningsdepend-
ing on context. In the line

$s/$/$/

the first ‘S’ refers to the last line of the file, the
secondrefers to the end of that line, and the third is a
literal dollar sign, to be added to that line.

o~

The Circumflex

)

The circumflex (or hat or caret) ™ stands for
the beginning of the lineFor example, supposgu
are looking for a line that begins witthe’. If you
simply say

fthe/

you will in all likelihood find several lines that con-
tain ‘the’ in the middle before arrivingt the oneyou
want. Butwith

I'the/

you narrowthe context, and thus arrive at the desired
one more easily.

The otheruseof ' is of course to enable you
to insert something at the beginning of a line:

sl
places a space at the beginning of the current line.

Metacharacters can be combined. To seéoch
a line that containsnly the characters

PP
you can use the command
N\.PP$/

The Star ‘0

Suppose you have a line that looks like this:
text x y text

wheretext stands for lots of text, anthere are some

indeterminatenumber of spaces between thand the
y. Supposethe job is to replace all the spaces
betweenx andy by a single spaceThe line is too
long to retype, and there are tapany spacesto
count. Whatow?

This is where the metacharactell ‘comes in
handy. A characterfollowed by a star stands for as
many consecutiveoccurrences of that character as
possible. To refer to all the spaces at once, say

SixaByixoy/

The constructionc means'as many spaces as pos-
sible’. Thus‘xg3y’ means ‘an x, as mangpacesas
possible, then a y'.

The star can be used witiny character,not
just space. If the original example was instead

text Xx———————— y text
thenall ‘=’ signs can be replaced by a single space
with the command

six=0yIxay!

Finally, suppose that the line was

Can you see what trap lies in wait for the unwarty?
you blindly type

six.0yIxay/

what will happen? The answer, naturally, is that it
depends. If thereare no other x’s or y's on the line,
then everything works, but it's blind luck, ngbod
management.Remember that.” matchesany single
character? Theh.O matchesas many single charac-
ters as possible, and unless you're careful, it &an
up a lot more of the line than you expected. the
line was, for example, like this:

text X text Xeoooeewnonnns y texty text
then saying
sIx.0yIxay/

will take everything from thdirst ‘x’ to the last ‘y’,
which, in this example, isndoubtedlymore thanyou
wanted.

The solution, of course, is to turn off the spe-
cial meaning of.” with ‘\.":
sM\.Oy/xpy/

Now everything works, for\!l means ‘as many
periodsas possible’.

There are times when the patterfil is exactly
what you want. For example, to change

Now is the time for all good men

into

Now is the time
use [0 to eat up everything after the ‘for”
siofor.0d./

There are a couple of additional pitfalls associ-
ated with O that you should be aware oMost not-
ableis the fact that ‘as many as possible’ meareso
or more. The fact that zero ia legitimate possibility
is sometimesrather surprising. For example, if our
line contained

text xy text x y text

and we said
Sixay/xay/

the first ‘xy’ matches this pattern, for it consists of an
‘X', zero spaces, and a ‘y'The resultis thatthe sub-
stitute acts on the first ‘xy’, and doe®t touch the
later one that actually containsome intervening
spaces.

The way around this, if it matters, ig specify
a pattern like
IXacOy/

which says ‘an x, a spacthen as many more spaces
as possible,then a y’, in other words, one or more
spaces.

The other startling behavioof ‘0 is again
related to the fact that zero aslegitimate numberof
occurrences of something followed by a st@he
command

s/xtlylg
when applied to the line
abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intendethe
reasonfor this behavior is that zero is a legal number
of matches, and there are no x'stla¢ beginningof
the line (so that gets converted into a ‘y’), nor
between the ‘a’ and the ‘b’ (so thagets converted
into a 'y’), nor ... andso on. Make sureyou really
want zero matches; if not, in this case write

s/xxylg

‘xx[is one or more X’s.

The Brackets ‘[]’

Supposethat you want to delete any numbers
that appearat the beginning of all lines of a fileYou
might first think of trying a series of commands like

1,$s/'11/
1,%s°2d/
1,$s/°30/

and so on, but this is clearly going to take forever if
the numbers are at all longUnless youwant to
repeat the commands over and over until finally
numbers are gone, you must get all the digitone
pass. This is the purpose of the brackets [and].

The construction
[0123456789]

matchesany single digit — the whole thing is called
a ‘character class’.With a character class, the job is
easy. The pattern ‘[0123456789] matches zero or

more digits (an entire number), so

1,$s/7[0123456789)/

deletes all digits from the beginning of all lines.

Any characters can appear within a character
class, and just to confuse the issue themeessen-
tially no special characters inside the brackets; even
the backslash doesn’t have special meaning. To
search for special characters, for example, you can
say

I\S)
Within [...], the [is not special. To get a ‘] into a
character class, make it the first character.

It's a nuisance to have to spellt the digits,
so you can abbreviate them as §J—similarly, [a—Z]
standsfor the lower case letters, and [AZ} for upper
case.

As a final frill on character classegpu can
specify a class that mearisone of the following
characters’. This is done by beginning the class with
a N,

[0-9]

stands for ‘any characteexcepta digit’. Thus you
might find the first line that doesn’t begin with a tab
or space by a search like

I'["(space)(tab)]/
Within a character class, the circumflex has a

special meaning only if it occurs #&he beginning.
Just to convince yourself, verify that

v
finds a line that doesn’t begin with a circumflex.

The Ampersand ‘&’

The ampersand ‘&’ is used primarily t®ave
typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time
Of course you can always say
s/the/the best/

but it seems silly to have to repeat the ‘th&he ‘&’
is used to eliminate the repetitiorOn theright side
of a substitute, the ampersand meambkatever was
just matched’, so you can say

s/the/& best/

andthe ‘&’ will stand for ‘the’. Of course this isn’t
much of a saving if the thing matched jisst ‘the’,
but if it is something truly long or awful, or if it is
something like 11 which matches a lobf text, you
can save some tedious typingThere is also much
less chanceof making a typing error in the replace-
ment text. For example, to parenthesize lae,
regardless of its length,

sl.O(&)/
The ampersand can occur mdren once on
the right side:
s/the/& best and & worst/
makes
Now is the best and the worst time
and
sl.O0&? &N/
converts the original line into
Now is the time? Now is the time!!
To get a literal ampersand, naturallhe
backslash is used to turn off the special meaning:
s/lampersantity

converts the word into the symboNotice that ‘&’ is
not specialon the left side of a substitute, only on the
right side.

Substituting Newlines

ed provides a facility for splitting a singline
into two or more shorter lines bygubstitutingin a
newline’. As the simplest example, suppoaeline
has gotten unmanageably long becauseditfing (or
merely because it was unwisely typedy. it looks
like

text xy text
you can break it between the ‘X’ and the 'y’ like this:

s/xy/A

y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that\'\turns off
special meanings,it seems relatively intuitive that a

‘\' at the end of a line would make the newline there
no longer special.

You can in fact make aingle line into several
lines with this same mechanisms a large example,
considerunderliningthe word ‘very’ in a long line by
splitting ‘very’ onto a separate line, and preceding it
by theroff or nroff formatting command ‘.ul’.

text a very big text
The command

slaverya/\
.ul\

veri
/

converts the line into foushorterlines, precedingthe
word ‘very’ by the line “.ul', and eliminating the
spaces around the ‘very’, all at the same time.

When a newline is substituteid, dot is left
pointing at the last line created.

Joining Lines
Lines may also be joined together, but this is

done with thej command instead of. Given the
lines

Now is
othe time

and supposingthat dot is set to the first of them, then
the command

j
joins them together. No blanks are added, which is

why we carefully showed a blardt the beginningof
the second line.

All by itself, aj commandjoins line dot to line
dot+1, but any contiguous set of lines damjoined.
Just specify the starting and ending linembers.
For example,

1,%jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \(... \)

(This section should be skipped on first read-
ing.) Recall that ‘& is a shorthand thatandsfor
whatever was matched by theft side of an s com-
mand. In much the same way yogan capture
separate pieces of what wastched;the only differ-
ence is that you have to specify on thé& side just
what pieces you're interested in.

Suppose, for instance, that you have a die
lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the
name, as in

A. B. Smith
C. Jones

It is possible to do this witla seriesof editing com-
mands, but it is tedious and error-pron€lt is
instructive to figure out how it is done, though.)

The alternativeis to ‘tag’ the pieces of the pat-
tern (in this case, the last name, dhd initials), and
then rearrangethe pieces. On the left side of a sub-
stitution, if part of the pattern is enclosed betwegn
and \), whatever matched that part is remembered,
and available for use on the right sid®n the right
side, the symbol\Y' refers to whatever matcheatie
first \(...\) pair, \2’ to the second(...\), and so on.

The command
1,$s\[",]D),aD(.D)A\2:\1/

although hard to read, does the joBhe first\(...\)
matchesthe last name, which is any string up to the
comma; this is referred to on the right side with'.
The second(..\) is whatever follows theommaand
any spaces, and is referred to &s. "\

Of course,with any editing sequence this com-
plicated, it's foolhardy to simply run iand hope.
The global commandg andv discussedn section 4
provide a way for you to print exactly those lines
which were affected by the substitute command, and
thus verify that it did what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discusghat of
line addressingn ed, that is, how you specify what
lines are to be affected by editing commandg/e
have already used constructions like

1,%s/xtlyl

to specify a change on all linesAnd most usersare
long since familiar with using a single newline (or
return) to print the next line, and with

Ithing/

to find a line that contains ‘thing’.Less familiar,
surprisingly enough, is the use of

?thing?

to scanbackwards for the previousoccurrenceof
‘thing’. This is especially handy wheyou realize
that the thing you want to operate onbigck up the
page from where you are currently editing.

The slashand question mark are the only char-
acters you can use to delinaitcontextsearchthough
you can use essentially any character in a substitute
command.

Address Arithmetic
The next step is to combinte line numbers
like ‘.7, '$, .../ and ?...?" with '+’ and='. Thus
$-1
is a command to print the next to last lioé the
current file (that is, one lindefore line ‘$’). For
example,to recall how far you got in a previous edit-
ing session,
$-5,%p
prints the last six lines(Be sureyou understandvhy

it's six, not five.) If there aren't six, of course, you'll
get an error message.

As another example,
—3,.+3p

prints from three lines before where you are now (at
line dot) to three lines after, thus giviygu a bit of
context. By the way, the ‘+' can be omitted:

—3.3p
is absolutely identical in meaning.

Another area in which yowan save typing
effort in specifying lines is to use *-and ‘+' asline
numbers by themselves.

by itself is a command to move back up one line in
the file. In fact, you can string several minus signs
together to move back up that many lines:

moves up three lines, as does8*~ Thus
-3,+3p
is also identical to the examples above.

Since ‘~' is shorter than .~1’, constructions

like
—..S/bad/good/

are useful. This changes ‘bad’ to ‘good’ on firevi-
ous line and on the current line.

‘+' and ‘-’ can be used in combination with
searchesusing /.../” and ‘?...?", and with ‘$’. The
search

Ithing/—
finds the line containing ‘thing’, and positionsu
two lines before it.

Repeated Searches
Suppose you ask for the search
/horrible thing/

andwhenthe line is printed you discover that it isn’'t
the horrible thing that you wanted, so it is necessary

to repeat the search agailvou don’t have tae-type
the search, for the construction

I

is a shorthand for ‘the previous thinthat was
searched for’, whatever it wasThis can berepeated
as many times as necessaryou can alsogo back-
wards:

??

searchedor the samething, but in the reverse direc-
tion.

Not only can you repeat the seardiyt you
canuse'/l' as the left side of a substitute command,
to mean ‘the most recent pattern’.

/horrible thing/
.... ed prints line with ‘horrible thing’ ...
s//good/p

To go backwards and change a line, say
??s//good/

Of course, you can still use the ‘& on the right hand
side of a substitute to stand for whatever got matched:

1Isll&z&Ip

finds the next occurrence of whatever you searched
for last, replaces it by twoopiesof itself, then prints
the line just to verify that it worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affectedby a command if you don't specify the lines
it is to act on, and on what lingou will be posi-
tioned (i.e., the value of dot) when a command
finishes. If you can editwithout specifyingunneces-
sary line numbers, you can save a lot of typing.

As the most obvious example, if you issue a
search command like

Jthing/

you are left pointing at the next line thabntains
‘thing’. Then no address igquiredwith commands
like s to make a substitution on that line, pto print
it, or | to list it, ord to delete it, ora to append text
after it, orc to change it, or to insert text before it.

What happens if there wa®o ‘thing’? Then
you are left right where you were — dot is
unchanged. This is also true if you were sittingn
the only ‘thing’ when you issued the commanihe
same rules hold for searches that (’se?’; the only
difference is the direction in which you search.

The delete command leaves dot pointing at
the line that followed théast deletedline. Whenline
‘$" gets deleted, however, dot points at thew line
5$|.

The line-changing commanda, ¢ and i by
default all affect the current line —# you give no
line number with them,a appends text after the
current line,c changes the current line, andnserts
text before the current line.

a, ¢, andi behaveidentically in one respect —
when you stop appending, changing or inserting, dot
points at the last line enteredlhis is exactlywhat
you want for typing and editingn the fly. For
example, you can say

a

.. text ...

... botch ... (minor error)
s/botch/correct/ (fix botched line)
a
... more text ...

without specifying any line number for the substitute
commandor for the second append comman@r
you can say

a
... text ...

... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should experiment tdeterminewhat hap-
pens if you addo lines witha, c ori.

The r command will read a file into the text
being edited, either at the eifdyou give no address,
or after the specified line if you doln either case,
dot pointsat the last line read inRemember that you
can even sayr to read a file in at the beginning of
the text. (You can also saa or li to start adding
text at the beginning.)

The w command writes out the entire fildf
you precede the command loye line number,that
line is written, while if you precede iy two line
numbers, that range dihes is written. The w com-
mand doesot change dot: the current line remains
the same, regardless of what liree written. This is
true even if you say something like

/"\.AB/,/"\.AE/w abstract

which involves a context search.

Since thew command is so easy to usgu
should save what you are editing regulatyyou go
alongjustin case the system crashes, or in case you
do something foolish, like clobbering what you're
editing.

The least intuitive behavior, ia sense,is that
of thes command. The rule is simple — you are left
sitting on the last line that got changeld.therewere
no changes, then dot is unchanged.

-9-

To illustrate, supposethat there are three lines
in the buffer, and you are sitting on the middle one:

x1
X2
X3

Then the command
—,+s/xlylp

prints the third line, which is the last one changed.
But if the three lines had been

x1

y2

y3
and the same command hhéen issuedwhile dot
pointed at the second line, then the result wdddo
changeand print only the first line, and that is where
dot would be set.

Semicolon *;’

Searcheswith /... and *?...?" start at the
current line and move forwardr backwardrespec-
tively until they either find the pattern or get baok
the current line. Sometimes this is not what is
wanted. Suppose, for example, that theffer con-
tains lines like this:

ab

bc

Starting at line 1, one would expect that the command
/al,/blp

prints all the lines from the ‘ab’ to the ‘bc’ inclusive.
Actually this is not what happen®oth searches (for
‘a’ and for ‘b’) start from the sameoint, and thus
they both find the line that contains ‘abThe result
is to print a single line.Worse, if there had been a
line with a ‘b’ in it beforethe ‘ab’ line, thenthe print
command would be in error, sindbe secondline
numberwould be less than the first, and it is illegal to
try to print lines in reverse order.

This is because the comma separator lifoe
numbers doesn’t set dot aachaddresds processed;
each search starts frothe sameplace. In ed, the
semicolon‘;’ canbe used just like comma, with the
single difference that use of a semicofoncesdot to
be set at that point as tHme numbersare being
evaluated. In effect, the semicolon ‘moves’ dot.
Thus in our example above, the command

lal;/blp

prints the range of lines from ‘ab’ to ‘bc’, because
after the ‘a’ is found, dot is set to that line, and then
‘b’ is searched for, starting beyond that line.

This property is most often useful in a very
simple situation. Suppose you want to find the
secondoccurrence of ‘thing’. You could say

/thing/
I

but this prints the first occurrence as wab the
second,and is a nuisance when you know very well
that it is only the second one you'iaterestedin.
The solution is to say

Ithing/;//

This saysto find the first occurrence of ‘thing’, set
dot to that line, then find the second and print only
that.

Closely related is searching for the second pre-
vious occurrence of something, as in

?something?;??

Printing the third or fourth or ..in either directionis
left as an exercise.

Finally, bear in mind that if you want to find
the first occurrence of something anfile, starting at
an arbitrary place within the file, it isot sufficientto
say

1;/thing/

because this fails if ‘thingbccurson line 1. Butit is
possible to say

0;/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you tthe interruptor delete
or ruboutor break key whiled is doing a command,
things are put back together again and your state is
restoredas muchas possible to what it was before the
commandbegan. Naturally, some changes are irrevo-
cable — if you are reading or writing a file wraking
substitutionsor deletinglines, these will be stopped in
some clean but unpredictable state thre middle
(which is why it is not usually wise tetop them).
Dot may or may not be changed.

Printing is more clear cutDot is not changed
until the printing is done.Thus if you printuntil you
see an interesting line, then Wditlete,you are not sit-
ting on that line or even near iDot is left whereit
was when thg@ command was started.

-10 -

4. GLOBAL COMMANDS

The global commandg andv are used to per-
form one or more editing commands on all lines that
either containd) or don't contain \{) a specified pat-
tern.

As the simplest example, the command
g/UNIX/p

prints all lines that contain the wordNIX'. The
pattern that goes between thlashescan be anything
that could be used in a line search or in a substitute
command; exactly the same rules and limitations
apply.

As another example, then,

g"\.lp

prints all the formatting commands in a f{lses that
begin with *’).

The v command is identical tg, except thait
operates on those linghat do not contain an
occurrence of the pattern(Don’t look too hardfor
mnemonic significance to the letter ‘v'$o

vif\.Ip

prints all the lines that don't begin with.”" — the
actual text lines.

The command thafollows g or v can be any-
thing:

g/"\./d

deletes all lines that begin withl,*and
9/"$/d

deletes all empty lines.

Probably the most usefutommandthat can
follow a global is thesubstitutecommand,for this
canbe usedto make a change and print each affected
line for verification. For example, we coulg¢hange
the word ‘Unix’ to ‘UNIX’ everywhere,and verify
that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used//" in the substitute command to

mean‘the previous pattern’, in this case, ‘UnixThe

p commandis done on every line that matches the
pattern, not just those on which a substitution took
place.

The global command operates by making two
passesover the file. On the first pass, all lines that
match the pattern are marke®n the secondpass,
eachmarkedline in turn is examined, dot is set to
that line, and the command executetdhis means
that it is possible for the command that followg ar
v to use addresses, set dot, and so on, quite freely.

g/"\.PP/+

prints the line that follows each ‘.PP’ command (the

signal for a new paragraph in some formatting pack-
ages). Remember that ‘+' means ‘one line past dot'.
And

g/topic/?\SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a lin¢hat begins‘.SH’ (a
sectionheading) and prints the line that follows that,
thus showing the section headings under which ‘topic’
is mentioned. Finally,

g/"\.EQ/+,\.EN/-p

prints all the lines that lie betwedmes beginning
with *.EQ’ and ‘.EN’ formatting commands.

The g and v commands can also be preceded
by line numbers, in which case the lines searched are
only those in the range specified.

Multi-line Global Commands

It is possible to do mor¢han one command
under the control of a global command, althodigé
syntax for expressing the operation is not especially
natural or pleasantAs an examplesupposehe task
is to change X’ to 'y’ and ‘ato ‘b’ on all lines that
contain ‘thing’. Then

g/thing/s/x/yX\
s/a/b/

is sufficient. The '\ signals theg command that the
set of commands continues on the next line; it ter-
minateson the first line that does not end with'.\
(As a minor blemish, you can't use a substitute com-
mand to insert a newline withingacommand.)

You should watch out for this problem:the
command

g/x/slyR
sla/b/

doesnot work as you expect.The rememberedat-
tern is the last pattern that wastually executed,so
sometimes it will be ‘X’ (as expectedind sometimes
it will be ‘a’ (not expected). You must spell it out,
like this:

g/x/sIxIyR
sla/b/

It is also possible to execut ¢ andi com-
mandsundera global command; as with other multi-
line constructions, all that is needed is to add’ at\
the end of each line except the lasthusto add a
“.nf and ‘.sp’ command before each ‘.EQ’ line, type

o/"\.EQ/\
.nf\
.Sp
There is no need for final line containinga ‘.’ to

terminate thei command, unless there are further
commands being done undée global. On the other

-11 -

hand, it does no harm to put it in either.

5. CUT AND PASTE WITH UNIX COMMANDS

One editing area in whichon-programmers
seemnot very confident is in what might be called
‘cut and paste’ operations — changing the nama of
file, making a copy of a file somewhere else, moving
a few lines from one place to another in a file, insert-
ing one file in the middle of another, splittirgfile
into pieces, and splicing two or more files together.

Yet most of these operations are actually quite
easy, if you keep your wits about you agd cau-
tiously. The next several sections talk about cut and
paste. We will begin with theunix commands for
moving entire files around, then discesscommands
for operating on pieces of files.

Changing the Name of a File

You have a file named ‘memo’ and you wint
to be called ‘paper’ insteadHow is it done?

The unix program that renames files dslled
mv (for ‘move’); it ‘moves’ the filefrom one nameto
another, like this:

mv memo paper

That's all there is to it:mv from the old naméo the
new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently clob-
bered by the information from thatherfile. The one
exception is that you can’t move a file to itself —

mv X X

is illegal.

Making a Copy of a File

Sometimeswhat you want is a copy of a file
— an entirely fresh versionThis might be because
you want to work on a fileand yet savea copy in
casesomething gets fouled up, or just because you're
paranoid.

In any case, the way to do it is with thep
command. ¢p standsfor ‘copy’; the system is big on
short command names, whicare appreciatedby
heavy users, but sometimes a strain for novices.)
Supposeyou have a file called ‘good’ and you want
to save a copy before you make some dranetit
ing changes.Choosea name — ‘savegood’ might be
acceptable — then type

cp good savegood

This copies ‘good’ onto ‘savegood’, and you now
have two identical copies of the file ‘good’(If
‘savegood’ previously contained something, it gets
overwritten.)

Now if you decide at some time that you want
to get back to the original state of ‘good’, you can
say

mv savegood good
(if you're not interested in ‘savegood’ any more), or
cp savegood good

if you still want to retain a safe copy.

In summary,mv just renames éile; cp makes
a duplicate copy.Both of them clobber th&arget’
file if it already exists, so you had better be sure
that's what you want to dbeforeyou do it.

Removing a File

If you decide you are really done with a file
forever, you can remove it with thien command:

rm savegood

throws away (irrevocably) the file called ‘savegood'.

Putting Two or More Files Together

The next step is the familiar one of collecting
two or more files into one big oneThis will be
needed, for example, when the author of a paper
decides that several sections need tedrabinedinto
one. There are severalwaysto do it, of which the
cleanest, once you get used to it, is a program called
cat. (Notall programs have two-letter namesat is
short for ‘concatenate’, which igxactly what we
want to do.

Suppose the job is toombine thefiles ‘filel’
and file2’ into a single file called ‘bigfile’.If you
say

cat file

the contents of ‘file’ will get printedn your terminal.
If you say

cat filel file2

the contentsof ‘filel’ and then the contents of ‘file2’
will both be printed on your terminal, in that order.
So cat combines the files, all right, but it's not much
help to print them on the terminal — we want them
in ‘bigfile’.

Fortunately, there is a wayYou can tell the
system that instead of printing on your terminady
want the same information put in a file. The way to
do it is to add tothe commandline the character>
and the name of the file where you want the output to
go. Then you can say

cat filel file2 >bigfile

andthe job is done.(As with cp andmv, you're put-
ting something into ‘bigfile’, and anything thatas
already there is destroyed.)

This ability to ‘capture’ the output of a pro-

- 12 -

gramis one of the most useful aspects of the system.

Fortunately it's not limited to theat program — you
canuse it withany program that prints on your termi-
nal. We'll see some more uses for it in a moment.

Naturally, you can combine severfles, not
just two:

cat filel file2 file3 ...>bigfile

collects a whole bunch.
Question: is there any difference between
cp good savegood

and
cat good >savegood

Answer: for most purposes, noYou might reason-
ably ask why there are two prograrirs that case,
since cat is obviously all you need.The answeris
that cp will do some other things as welkhich you

can investigate for yourself by reading the manual.

For now we’'ll stick to simple usages.

Adding Something to the End of a File

Sometimes you want to add ofile to the end
of another. We have enough building blocks now
that you can do it; in fact before reading further it
would be valuable if you figured out howTo be
specific, how would you usgp, mv and/orcat to add
the file ‘good1’ to the end of the file ‘good’?

You could try

cat good goodl>temp
mv temp good

which is probably most direct.You should also
understand why

cat good goodl>good

doesn’twork. (Don't practice with a good ‘good’!)

The easy way is to use a variaoft >, called
>>_ In fact, >> is identical to> except that insteadf
clobberingthe old file, it simply tacks stuff on at the
end. Thus you could say

cat goodl>>good

and ‘goodl’ is added to the end of ‘good’(And if
‘good’ didn’t exist, this makes a copy of ‘goodl’
called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating piece$
files — individual lines or groups of linesThis is
another area where new users sagmureof them-
selves.

Filenames

Thefirst stepis to ensure that you know theel
commands for reading and writing fileOf course
you can't go very far without knowing and w.
Equally useful, but less well known, is the ‘edit’ com-
mande. Within ed, the command

e newfile

says‘l want to edit a new file calledewfile, without
leaving the editor.’ The e command discards what-
ever you're currently working on and starts over on
newfile. It's exactly the same as if you hadit with

the g command, then re-entereati with a new file
name,except that if you have a pattern remembered,
then a command liké will still work.

If you entered with the command
ed file

ed remembers the name of the filend anysubse-
quent e, r or w commands that don’t contain a
filename will refer to this remembered fil&hus

ed filel

... (editing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leavinged and without typing the name
of any file more than once(As an aside, if you
examine the sequence of commands hgra,cansee
why many UNIX systems use as a synonym for
ed.)

You can find out the remembered file name at
any time with thef command; justype f without a
file name. You can also change the name of the
remembered file name wifh a useful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of @reciousfile, then usesf to
guarantee that a careless command won't clobber
the original.

Inserting One File into Another

Supposeyou have a file called ‘memo’, and
you want the file called ‘table’ to be inserted just
after the reference to Table 1.That is, in ‘memo’
somewhere is a line that says

Table 1 shows that ...

and the data contained in ‘table’ has dgo there,
probably so it will be formatted properly byroff or
troff. Now what?

This one is easyEdit ‘memo’, find ‘Table 1’,
and add the file ‘table’ right there:

13-

ed memo

[Table 1/

Table 1 shows that ... [response from ed]
.r table

The critical line is the last oneAs we said earlier,
the r commandreads a file; here you asked for it to
be read in right aftedine dot. An r command
without any addressaddslines at the end, so it is the
same asr.

Writing out Part of a File

The otherside of the coin is writing out part of
the document you'readiting. For example, maybe
you want to split out into a separate file that table
from the previousexample, so it can be formatted and
tested separately.Suppose that in the file being
edited we have

TS
...[lots of stuff]
.TE

which is the way a table is set up tbe tbl program.
To isolate the table in a separate filglled ‘table’,
first find the start of the table (the ‘TS’ line), then
write out the interesting part:

TS/
.TS [ed prints the line it found]
LI\ TE/w table

andthe job is done. If you are confident, you can do
it all at once with

\.TS/;\.TE/w table

The point is that thev command can write out
a group of lines, instead of the whdiée. In fact,
you can write out a single line if you likgyst give
one line number instead of twdror example, if you
have just typed a horribly complicated liaed you
know that it (or something like it)s going to be
needed later, then save it — don't re-type lit. the
editor, say

a
...lots of stuff...
...horrible line...

W temp
a
...more stuff..

.r temp
a
...more stuff..

This last exampleis worth studying, to be sure you
appreciate what's going on.

Moving Lines Around

Supposeyou want to move a paragraph from
its present position in a paper to the ettbw would
you do it? As a concrete example, suppose each
paragraph in the paper begins with tfematting
command ‘.PP’. Think about it and write down the
details before reading on.

The brute force way (not necessarily bad) is to
write the paragraph onto temporaryfile, delete it
from its current position, then read in the temporary
file at the end. Assuming that you are sitting on the
PP’ command that begins the paragrafitis is the
sequence of commands:

L\.PP/-w temp
LI-d
$r temp

That is, from where you aneow (‘.") until one line
before the next.PP’ (‘/\.PP/-) write onto ‘temp’.
Then delete the same linesinally, read ‘temp’ at
the end.

As we said, that's the brute foragay. The
easier way (often) is to use thmove commandm
that ed provides — it lets you do the whokeet of
operations at one crack, without any temporary file.

The m commandis like many othered com-
mandsin thatit takes up to two line numbers in front
that tell what lines are to be affectedt is also fol-
lowed by a line number that teliwherethe lines are
to go. Thus

linel, line2 m line3

saysto move all the lines between ‘linel’ and ‘line2’
after ‘line3’. Naturally, any of ‘linel’ etc., can be
patterns between slashes, $ signs, or other ways
specify lines.

Supposeagain that you're sitting at the first
line of the paragraphThen you can say

L\.PP/-m$

That's all.

As another example of a frequenperation,
you can reversethe order of two adjacent lines by
moving the first one to after tteecond. Supposehat
you are positioned at the firsThen

m+

doesit. It says to move line dot to after orime
after line dot. If you are positioned on the second
line,

m—

does the interchange.

As you can see, them command is more suc-
cinct and direct than writing, deleting and re-reading.
When is brute force better anywaymhis is a matter
of personal taste — dowhat you have most

- 14 -

confidencein. The main difficulty withthe m com-
mand is that if you use patterts specify both the
lines you are moving and the target, ymaveto take
carethat you specify them properly, or you may well
not move the lines you thought you didlhe result
of a botchedm commandcan be a ghastly mess.
Doing the job a step at a time makes it eafaeryou
to verify at each step that you accomplished what you
wanted to. It's alsoa good idea to issue & com-
mand before doing anything complicateden if you
goof, it's easy to back up to where you were.

Marks

ed provides a facility for marking &ne with a
particular name so you can later reference it by name
regardless of its actual line numbeiThis can be
handy for moving lines, and for keeping track of
them as they move.The mark command isk; the
command

kx

marks the current line with the name ‘X.If a line
number precedes thk, that line is marked. (The
mark name must be a single loneaseletter.) Now
you can refer to the marked line with the address

"X

Marks are most useful for moving things
around. Find the first line of the block to be moved,
and mark it with'a. Then find the last line and mark
it with 'b. Now position yourself at thplace where
the stuff is to go and say

'a/bm.

Bear in mind that only one line can havea-
ticular mark name associated with it at agien
time.

Copying Lines

We mentionedearlier the idea of saving a line
thatwas hard to type or used often, so as to cut down
on typing time. Of course this could benore than
one line; then the saving is presumably even greater.

ed provides another command, called(for
‘transfer’) for making a copy of @roup of one or
more lines at any point. This is often easier than
writing and reading.

The t command is identical to then com-
mand, except that instead of moving lines it simply
duplicates them at the place you namé&dhus

1,%t$

duplicates the entire contents that you are editiAg.
more common use fot is for creating a series of
lines that differ only slightly. For example,you can
say

a

.......... X(long line)

t. (make a copy)

sixlyl (change it a bit)

t. (make third copy)

slylz/ (change it a bit)
and so on.

The Temporary Escape ‘!’

Sometimes it is convenient to be abletéon-
porarily escape from the editor to do soatberunix
command perhapsone of the file copy or move com-
mands discussed in section 5, withteaving theedi-
tor. The ‘escape’ commant provides a way to do
this.

If you say
lany UNIX command

your currentediting state is suspended, and thex
commandyou asked for is executed//hen the com-
mand finishesed will signal you by printing another
I; at that point you can resume editing.

You can really doany unix command, includ-
ing anothered. (This is quite commonin fact.) In
this case, you can even do another

7. SUPPORTING TOOLS

There are several tools amelchniquesthat go
along with the editor, all of which are relatively easy
once you know howed works, because they are all
basedon the editor. In this section we will give
some fairly cursory examples tfiesetools, more to
indicate their existence than farovide a complete
tutorial. More information on each can Heund in
[3].

Grep

Sometimesyou want to find all occurrences of
someword or pattern in a set of files, to edit them or
perhapsjust to verify their presence or absencét
may be possible to edit each file separately lané
for the pattern of interest, but if there are many files
this can get very tedious, and if the filage really
big, it may be impossible because of limitseth

The programgrep was invented to get around
these limitations. The search patterns that viwve
described in the paper are often called ‘regular
expressions’, and ‘grep’ stands for

glrelp

That describes exactly wharep does — it prints
every line in a set of fileshat containsa particular
pattern. Thus

grep 'thing filel file2 file3 ...

-15 -

finds ‘thing’ wherever it occurs in any of the files
‘filel’, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can later edit it if
you like.

The pattern represented by ‘thing’ can be any
patternyou can use in the editor, sincgrep and ed
use exactly the same mechanism for patwgarch-
ing. It is wisest always to enclose the pattarthe
single quotes'..! if it contains any non-alphabetic
characters,since many such characters also mean
something special to thenix command interpreter
(the ‘shell’). If you don’t quote themthe command
interpreter will try to interpret them befogrep gets
a chance.

There is also a way to find lines thaton't
contain a pattern:

grep —v 'thing filel file2 ...

finds all lines that don't contains ‘thing’.The —v
must occur in the position shownGiven grep and
grep —v, it is possible to do thingkke selectingall
lines that contain some combination of patternBor
example, to get all lines that contain X’ but not ‘y’:

grep x file... O grep —v y

(The notationO is a ‘pipe’, which causes the output
of the first command to be useasb input to the
second command; see [2].)

Editing Scripts

If a fairly complicated set of editing operations
is to be done on a whole set of filtise easiesthing
to dois to make up a ‘script’, i.e., a file that contains
the operations you want to perform, then apply this
script to each file in turn.

For example, suppose you want to change
every ‘Unix’ to ‘UNIX’ and every ‘Gcos’ to ‘GCOS’
in a large number of files.Then put into the file
‘script’ the lines

g/Unix/s//{UNIX/g
g/Gcos/s//GCOS/g
w

q
Now you can say

ed filel<script
ed file2<script

This causesed to take its commands from the
preparedscript. Notice that the whole job has to be
planned in advance.

And of course by using thenix command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed (‘stream editor’) is a version of the editor
with restricted capabilities but which is capable of
processing unlimited amounts$ input. Basically sed
copies its input to its output, applying ooe more
editing commands to each line of input.

As an example, suppose that we want to do the
‘Unix’ to ‘UNIX’ part of the example given above,
but without rewriting the files.Then the command

sed 's/Unix/UNIX/g" filel file2 ...

applies the command ‘s/Unix/UNIX/g’ to all lines
from ‘filel’, ‘file2’, etc., and copies all lines tthe
output. The advantage of usinged in such a case is
that it can be used with input téarge for ed to han-
dle. All the output can be collected in one place,
either in a file or perhaps piped into another program.

If the editing transformation iso complicated
that more than one editing command is needed, com-
mands can be supplied from a file, @n the com-
mand line, with a slightly more complex syntaxto
take commands from a file, for example,

sed —f cmdfile inputfiles...

sed has further capabilities, including condi-
tional testing and branching, which we cannotirgo
here.

Acknowledgement

| am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

References

[1] Brian W. Kernighan,A Tutorial Introduction to
the UNIX Text EditorBell Laboratories inter-
nal memorandum.

[2] Brian W. Kernighan, UNIX For Beginners,
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis NRitchie, The
UNIX Programmer’'s Manual. Bell Labora-
tories.

An Introduction to the UNIX Shdll

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shellis a command programming language that provides an interface woi#ie
operating systemlts features include control-flow primitives, parameter passing, vari-
ables and string substitutionConstructs such ashile, if then else, casand for are
available. Two-way communication is possible between #teell and commands.
String-valuedparameters, typically file names or flags, may be passed to a command.
A returncodeis setby commands that may be used to determine control-flow, and the
standard output from a command may be used as shell input.

The shell can modify the environment in which commands rudnput and output can

be redirected to files, and processes that communicate through ‘pipes’ can be invoked.
Commands are found by searching directories in the file system in a sethegrozn

be defined by the uselCommands can be read either from the termindtamn a file,

which allows command procedures to be stored for later use.

November 12, 1978

TUNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shdll

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an inté¢nface to
UNIX operating system.This memorandum describes, with examples,UhgX shell. The first section
covers most of the everyday requirements of terminal usg@osne familiarity with UNIX is an advan-
tage when reading this section; see, éaample,"UNIX for beginners Section 2 describes those
featuresof the shell primarily intended for use within shell procedurébese include the control-flow
primitives and string-valued variables provided by the shallknowledge of agprogramminglanguage
would be a help whenreadingthis section. The last section describes the more advanced features of the
shell. References of the forrtseepipe (2)" are to a section of the UNIX manifal.

1.1 Simple commands

Simple commands consist of one or more words separated by blahksfirst word is the name of the
command to be executed; any remaining words are passed as arguments to the cdromexample,

who
is a command that prints the names of users loggedtie. command

Is -l
prints a list of files in the current directorythe argumentl tells Is to print status information, size and
the creation date for each file.

1.2 Background commands
To execute a command the shell normally creates apnegessand waits for itto finish. A command
may be run without waiting for it to finishFor example,

cC pgm.c &

calls the C compiler taompilethe file pgm.c. The trailing& is an operator that instructs the shell not

to wait for the command to finishTo help keep track of such a process the shell reports its process
numberfollowing its creation. A list of currently active processes may be obtained usingpstem-
mand.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the tefminal.
output may be sent to a file by writing, for example,

Is = >file

The notatiorn>file is interpreted by the shell and is not passed as an argumentlfdfile does not exist
then the shell creates it; otherwise the original conteinfide are replaced with the output frolsy Out-
put may be appended to a file using the notation

Is - >>file

In this casdile is also created if it does not already exist.

2.

The standard input of a command may be taken from a file instehé ®rminal by writing, for exam-
ple,

wc <file

The commandwc reads its standard input (in this case rediredtenh file) and prints the number of
characterswordsandlinesfound. If only the number of lines is required then

wc -l <file

could be used.

1.4 Pipelines and filters

The standardoutputof one command may be connected to the standard input of another by writing the
‘pipe’ operator, indicated by, as in,

Is—I | wc
Two commands connected in this way constituepalineand the overall effect is the same as
Is -1 >file; wc <file

except that ndile is used. Instead the two processes are connected by a pip@i(se€)) and are run
in parallel. Pipes are unidirectional and synchronization is achieved by haltrmghen there is nothing
to read and haltings when the pipe is full.

A filter is a command that reads its standard input, transforinssihmeway, and prints the result as
output. One such filtergrep, selects from its input those lines that contain some specified stfiog.
example,

Is | grep old

prints those lines, if any, of the output frdmthat contain the stringld. Another useful filter isort
For example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

Is | grep old| wc -l

prints the number of file names in the current directory containing the stdng

1.5 File name generation
Many commands accept arguments which are file nafRes.example,

Is =l main.c

prints information relating to the filmain.c.
The shell provides a mechanism for generating a list of file names that match a fatreexample,

Is -l *.c

generates, as argumentslgpall file names in the current directory that enddn The character is a
pattern that will match any string including the null striig.generalpatternsare specified as follows.

* Matches any string of characters including the null string.
? Matches any single character.
[..] Matches any one of the characters enclos&doair of characterseparatedy a minus

will match any character lexically between the pair.
For example,

[a-z]*
matches all names in the current directory beginning with one of the lettiersughz.
lusr/fred/test/?

matches all names in the directdnsr/fred/test that consist of a single charactelf. no file nameis
found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some patban.
also be used to find fileszor example,

echo /usr/fredf/core

finds and prints the names of albre files in sub-directories ofusr/fred. (echois a standard UNIX
command that prints its arguments, separated by blarfikgg last feature can be expensive, requiring a
scan of all sub-directories dfisr/fred.

There is one exception to the general rules given for pattéfhs. character.” at the start of a file
name must be explicitly matched.

echox
will therefore echo all file names in the current directory not beginning with *
echo.x

will echo all those file names that begin with. * This avoids inadvertent matching of the namearid
‘." which mean ‘the current directory’ and ‘the parent directory’ respectivéNotice that Is
suppresses information for the filesadnd *..".)

1.6 Quoting

Characters that have a special meaning to the shell, suctras? | &, are called metacharacters
complete list of metacharacters is given in appendixMBy characterprecededby a \ is quotedand
loses its special meaning, if anifhe\ is elided so that

echo\?
will echo a single?, and
echo\\

will echo a singlé. To allow long strings to be continued over more than one line the seduence
line is ignored.

\ is convenient for quoting single characterd/hen more than one characteedsquoting the above
mechanismis clumsy and error prone. A string of characters may be quoted by enclosing the string
between single quoted-or example,

echo xx¥*xx XX
will echo
XX*HHE XX

The quotedstring may not contain a single quote but may contain newlines, which are preserhés.
guoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretatiorebéit
not all metacharactersDiscussion of the details is deferred to section 3.4

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a comBgarakfault
this prompt is$’. It may be changed by saying, for example,

PStyesdear

that sets the prompt to be the striyggdear. If a newline is typed and further inpigt neededhenthe
shell will issue the prompt ‘>. Sometimes this can be caused by mistypinguate mark. If it is
unexpected then an interrumgL) will return the shell to read another commarihis prompt maybe
changed by saying, for example,

PSZmore

1.8 The shell and login

Following login (1) the shellis called to read and execute commands typed at the terntirtak user’s
login directory contains the filgrofile then it is assumed to contain commands and is read by the shell
before reading any commands from the terminal.

1.9 Summary
. Is
Print the names of files in the current directory.
. Is >file
Put the output fronts into file.
. Is | we -l

Print the number of files in the current directory.
. Is | grep old
Print those file names containing the straid.
. Is | grep old | wec -l
Print the number of files whose name contains the stiithg

. cC pgm.c &
Runcc in the background.

2.0 Shell procedures
The shell may be used to read and execute commands contained inFoffiexample,

sh file [args...]

calls the shell to read commands frdile. Such a file is called aommand procedurer shell pro-
cedure. Argumentsmay be supplied with the call and are referred tdilmusing the positional parame-

ters$l, $2, For example, if the filevg contains
who | grep $1

then
sh wg fred

is equivalent to

who | grep fred

UNIX files have three independent attributesad, writeand execute. The UNIX commandchmod(1)
may be used to make a file executabfar example,

chmod +x wg

will ensure that the filevg hasexecutestatus. Following this, the command
wg fred

is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangéat#ither case amew processis
created to run the command.

As well as providing names for the positional parameters, the number of positional parametecslin the
is available a$#. The name of the file being executed is availabl&tas

A special shell paramet&x is used to substitute for all positional parameters ex$@ptA typical use
of this is to provide some default arguments, as in,

nroff —T450 -ms $

which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the argun®#nt$2(...) executingcommands
oncefor eachargument. An example of such a proceduretés that searches the filesr/lib/telnos that
contains lines of the form

fred mh0123
bert mh0789

The text oftel is

fori
do grep $i /usr/lib/telnos; done

The command
tel fred

prints those lines irusr/lib/telnos that contain the strinfred .

tel fred bert

prints those lines containirfged followed by those fobert.
Thefor loop notation is recognized by the shell and has the general form
for namein wl w2...

do command-list
done

A command-lisis a sequence of one or more simple commands separatehinatedby a newline or
semicolon. Furthermore, reserved words likkw and done are only recognized following aewline or
semicolon. nameis a shell variable that is set to the wowds w2... in turn each time theommand-

list following do is executed.If in wl w2... is omitted then the loop is executed once for each posi-
tional parameter; that isn $* is assumed.

Another example of the use of thar loop is thecreatecommand whose text is
for i do >%$i; done

The command
create alpha beta

ensures that two empty filedpha and betaexist and areempty. The notation>file may be used on its
own to create or clear the contents of a fidotice also that semicolon(or newline)is requiredbefore
done.

2.2 Control flow - case
A multiple way branch is provided for by tlvase notation. Forexample,

case $#n

1) cat>$1 ;;

2) cat>$2<%$1 ;;

%) echo’usage: append [from] t¢f
esac

is anappendcommand. When called with one argument as
append file

$# is the stringl and the standard input is copied onto the enfilefising thecat command.
append filel file2

appends the contents filel onto file2. If the number of arguments supplieddppendis other than 1
or 2 then a message is printed indicating proper usage.

The general form of thease command is

case word in
pattern) command-list;

esac

The shell attempts to matalkiord with eachpattern, in the order in which the patterns appeidt.a
match is found the associatedmmand-lisis executed and execution of tbase is complete. Since*
is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensuteat only one pattern matchethe case argumentThe
first match found defines the set of commatudise executed. In the examplebelow the commanddol-
lowing the seconé will never be executed.

case $#n
*) .05
*) .05
esac

Another example of the use of thase construction is to distinguish between different forms of an argu-
ment. The following example is a fragment ofta command.

fori
do case $i in
—[ocs)) cee
—*) echo’unknown flag $i’;;
*.¢) /lib/cO$i...
%) echo’unexpected argument $i’
esac
done

To allow the same commands to be associated mvihe than one pattern thecase command provides
for alternative patterns separated by .aFor example,

case $i in
-X|-y)
esac

is equivalent to

case $i in

—[xyl)
esac

The usual quoting conventions apply so that

case $i in
\?)...

will match the characte?.

2.3 Here documents

The shell procedurtel in section 2.1 uses the filasr/lib/telnos to supply the data fogrep. An alter-
native is to include this data within the shell procedure lasradocument, as in,

for i
do grep $ix!

fred mh0123
bert mh0789
!
done
In this example the shell takes the lines betweehand! as the standard input fgrep. The string!
is arbitrary, the document being terminated by a line that consists of the string folkewing

Parameters are substituted in the document before it is made availgép s illustrated bythe fol-
lowing procedure calleddg .

ed $3<%
g/$1/s//$2/g
w

%

The call
edg stringl string?2 file
is then equivalent to the command

ed file <<%
g/string1/s//string2/g
w

%

and changes all occurrencesstfingl in file to string2 . Substitution can be prevented usintp quote
the special charactéras in

ed $3x+
1\$s/$1/$2/g
w

+

(This version ofedgis equivalent to the first except thed will print a ? if there are no occurrences of
the string$l.) Substitution within ehere documentmay be prevented entirely by quoting the terminat-
ing string, for example,

grep $i<\

#
The document is presented without modificatiorgrep. If parameter substitution is not required in a
heredocument this latter form is more efficient.

2.4 Shell variables

The shell provides string-valuedvariables. Variable names begin with a letter and consist of letters,
digits and underscoresVariables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variablesr, box and acct. A variable may be set to the nutring by
saying, for example,

null=
The value of a variable is substituted by preceding its name®yitbr example,
echo $user

will echo fred.
Variables may be used interactively to provide abbreviations for frequently used s&mgsxample,

b=/usr/fred/bin
mv pgm $b

will move the filepgmfrom the current directory to the directotysr/fred/bin. A more general nota-
tion is available for parameter (or variable) substitution, as in,

echo $usep

which is equivalent to

echo $user
and is used when the parameter name is followed by a letter or Baitexample,
tmp=/tmp/ps
ps a>${tmp}a
will direct the output opsto the file/tmp/psa, whereas,
ps a>$tmpa
would cause the value of the variahiepa to be substituted.
Except for$? the following are set initially by the shelb? is set after executing each command.

$? The exit status (return code) of the last command executed as a dstin@l Most
commandsreturn a zero exit status if they complete successfully, otherwise a non-zero
exit statusis returned. Testingthe value of return codes is dealt with later undérand
while commands.

St The numberof positional parameters (in decimallJsed, for example, in thappend
command to check the number of parameters.
$$ The process number of this shell (in decim&®jnce processumbersare unigueamong

all existing processes, this string is frequently used to generate unique temporary file
names. Foexample,

ps a>/tmp/ps$$
rm tmp/ps$$

$! The process number of the last process run in the background (in decimal).
$- The current shell flags, such asand-v.
Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When usednteractively the shell looks at the file specified by this variable before it
issues a promptlf the specified file has been modified since it was last lookeheat
shell prints the messag®mu have maibefore prompting for the next commandhis
variable is typically set in the filgrofile, in the user’s login directoryFor example,

MAIL =/usr/mail/fred

$HOME The default argument for thed command. The current directoryis used to resolve file
name references that do not begin with, and is changed usinpe cd command. For
example,

cd /usr/fred/bin
makes the current directofysr /fred/bin.
cat wn

will print on the terminal the filavn in this directory. The commandd with no argu-
ment is equivalent to

cd $HOME

This variable is also typically set in the the user’s login profile.
$PATH A list of directories that contain commands (8earch patf). Each time acommandis

$Ps1
$Ps2
$IFS

-10 -

executedby the shell a list of directories is searched for an executable flebPATH is
not set then the current directofpjn, and/usr/bin aresearched by defaultOtherwise
$PATH consists of directory names separated byFor example,

PATH=:/usr/fred/bin/bin:/usr/bin

specifies that the current directory (the ratling beforethe first :), /usr/fred/bin, /bin
and/usr/bin are to be searched in that ordén. this way individual userscanhavetheir

own ‘private’ commands that are accessible independentheoturrentdirectory. If

the command nameontainsa / then this directory search is not used; a single attempt is
made to execute the command.

The primary shell prompt string, by defaul§, .

The shell prompt when further input is needed, by default, ‘>

The set of characters used liank interpretation(see section 3.4).

2.5 The test command
The testcommand, although not part of the shell, is intended for use by shell progiamsxample,

test—f file

returns zero existatusif file exists and non-zero exit status otherwide.generaltestevaluates a predi-
cateandreturnsthe result as its exit statusSome of the more frequently ustsbtarguments are given
here, sedest(1) for a complete specification.

test s true if the argumens is not the null string
test—f file true if file exists

test-r file true if file is readable

test-w file true if file is writable

test—d file true if file is a directory

2.6 Control flow - while

The actions of théor loop and thecase branch are determined by data available to the skelvhile
or until loop and anif then else branch are also provided whose actions are determined by the exit
status returned by commanda. while loop has the general form

while command-list
do command-list
done

The value tested by thehile command is the exit status of the last simple command followimtg.
Each time round the loopommand-listis executed; if a zero exit statissreturnedthen command-list
is executed; otherwise, the loop terminat€sr example,

while test $1
do...

shift
done

is equivalent to

for i
do...
done

shiftis a shell command that renames the positional parang2e$8, ... as$1, $2, ... and losespl.

Another kind of use for thevhile/until loop is to wait until some external event occurs and then run
some commandsin anuntil loop the termination condition is reverseHor example,

-11 -

until test—f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waitsr 5 minutesbefore tryingagain. (Presum-
ably another process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,

if command-list

then command-list
else command-list
fi

that tests the value returned by the last simple command follafving

Theif command may be used aonjunctionwith the testcommand to test for the existence of a file as
in

if test —f file

then process file

else do something else
fi

An example of the use @f, case andfor constructions is given in section 2.10
A multiple testif command of the form

if ...
then
else if...
then
else if...

fi
fi
fi
may be written using an extension of tha@otation as,

if ...

then

elif

then

elif

fi

The following example is theouch command which changes the ‘last modified’ time fdistof files.
The command may be used in conjunction waithke(1) to force recompilation of a list of files.

-12 -

flag=
for i
do case $i in
—c) flag=N;;
%) if test—f $i
then In $i junk$$; rm junks
elif test $flag
then echo file\'$i\" does not exist
else >$i
fi
esac
done

The —c flag is used in this command to force subsequentthld® createdif they do not alreadyexist.
Otherwise, if the file does not exist, an error message is prifited.shell variableflag is set to some
non-null string if the-c argument is encountered:he commands

In...;rm...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if commandl1
then command?2
fi

may be written
commandl && command2
Conversely,
commandl| | command2
executescommand2only if commandZfails. In each case the value returned is that of thesiasple

command executed.

2.8 Command grouping
Commands may be grouped in two ways,

{ command-list }
and

(command-lisf

In the firstcommand-lists simply executed.The second form executesmmand-listas a separate pro-
cess. Foexample,

(cd x; rm junk)
executegm junkin the directoryx without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the diregtory

13-

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedteedirst is
invoked within the procedure as

set-v

(v for verbose)and causedines of the procedure to be printed as they are rdads usefulto helpiso-
late syntaxerrors. It may be invoked without modifying the procedure by saying

sh-v proc...

whereproc is the nameof the shell procedure. This flag may be used in conjunction with the flag
which prevents execution of subsequeammmands. (Note that sayinget-n at a terminal will render
the terminal useless until an end-of-file is typed.)

The command
set—x

will produce an execution tracerollowing parameter substitution each command is priatatl is exe-
cuted. (Try these at the terminal to see what effect they haBeth flags may be turned off by saying

set—

and the current setting of the shell flags is availablg-as

2.10 The man command

The following is theman command which is used to print sections of the UNIX manuials called,
for example, as

man sh
man-t ed
man 2 fork

In the first the manual section feh is printed. Since no section is specified, section 1 is us€hde
second example will typesett(option) the manuasectionfor ed. The last prints théork manual page
from section 2.

- 14 -

cd /usr/man

: “colon is the comment command”
: “default is nroff ($N), section 1 ($s)
N=n s=1

for i
do case $i in

[1-9]*) s=$i;;

-t) N=t;;

-n) N=n;;

—*) echo unknown fla§ $i\" ;;

%) if test—f man$s/$i.$s
then E N} roff man0/§N}aa man$s/$i.$s
else : look through all manual sections”
found=no
forjin123456789
do if test—f man$j/$i.$j
then man $j $i
found=yes
fi
done
case $found in
no) echo’$i: manual page not found”
esac
fi
esac
done

Figure 1. A version of the man command

- 15 -

3.0 Keyword parameters

Shell variables may be given values by assignmemthena shell procedures invoked. An argument
to a shell procedure of the formame=valuethat precedes the command name cawsdse to be
assigned tamamebefore execution of the procedure begifihe valueof namein the invoking shell is
not affected. For example,

user=fred command

will executecommandwith user set tofred. The -k flag causesarguments of the formame=valueto
be interpreted in this way anywhere in the argument l&ch namesare sometimes called keyword
parameters.If any arguments remain they are available as positional pararfiéie$,

The setcommand may also be used to set positional parameters from within a proceduexample,
set— *

will set $1 to the first file name in the current directofi2 to the next, and so onNote that the first
argument~, ensures correct treatment when the first file name begins with a

3.1 Parameter transmission

When a shell procedureis invoked both positional and keyword parameters may be supplied with the
call. Keyword parameters are also made available implicitly to a shell procedure by specifying in
advance that such parameters are to be expoRedexample,

export user box

marks the variableaser andbox for export. When a shell procedure is invoked copies are madd! of
exportable variables for use within the invoked proceduviadification of such variables within the
procedure does not affect the values in the invoking sliels generally true of ahell procedurethat it
may not modify the stateof its caller without explicit request on the part of the calléBharedfile
descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be dedadmhly. The form of this com-
mand is the same as that of #agortcommand,

readonly name..

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted fétoit.example, if the variabld is
not set

echo $d

or
echo $d}

will echo nothing. A default string may be given as in
echo $d-}

which will echo the value of the variabtkif it is set and'.’ otherwise. The default string is evaluated
using the usual quoting conventions so that

echo $d-"*"}
will echo * if the variabled is not set. Similarly
echo $d-$1}

will echo the value ofl if it is set and the value (if any) &L otherwise. A variable may be assigned a
default value using the notation

- 16 -

echo $d=}
which substitutes the same string as
echo $d-}

and if d were not previously set then it will be set to the string ‘(The notation §...=...} is not
available for positional parameters.)

If there is no sensible default then the notation
echo $d?message

will echo the value of the variablk if it has one, otherwisenessages printed by the shell and execu-
tion of the shellprocedureis abandoned.If messagdas absent then a standard message is prinfed.
shell procedure that requires some parameters to be set might start as follows.

: Huser? ${acct? Hbin?

Colon () is a command that is built in to the shell and does nothing once its arguments have been
evaluated. If any of the variablesiser, acct or bin are not set then the shell will abandon execution of
the procedure.

3.3 Command substitution

The standard output from a command carsblestitutedn a similar way to parameters.The command
pwd prints on its standardoutput the name of the current directorfiyor example, if the current directory
is /usr/fred/bin then the command

d="pwd"
is equivalent to
d=/usr/fred/bin

The entire string between grave accents.| is taken ashe command to be executed and is replaced
with the outputfrom the command.The command is written using the usual quoting conventions except
that a” must be escaped using a For example,

Is “‘echo"$1™
is equivalent to
Is $1

Command substitution occurs in all contexts where parameter substitution occurs (inbkridgcu-

ments) and the treatment of the resulting text is the same in both dasssnechanismallows string

processingcommandgo be usedwithin shell proceduresAn example of such a commandhasename
which removes a specified suffix from a strinigor example,

basename maia.c
will print the stringmain. Its use is illustrated by the following fragment fronca@command.

case $A in
*.C) B="basenam8A .c’

esac

that setsB to the part offA with the suffix.c stripped.
Here are some composite examples.

-17 -

. foriin’ls—t"; do...
The variable is set to the names of files in time order, most recent first.

. set “date’; echo $6 $2 $3, $4
will print, e.g.,1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shellis a macroprocessor that provides parameter substitution, command substitution and file name
generation for the arguments to commandsis section discusses the ordemihich theseevaluations
occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendBefdre a commands
executed the following substitutions occur.

. parameter substitution, e.$user
. command substitution, e.¢pwd’

Only one evaluationoccurs so that if, for example, the value of the variablie the string
$y then

echo $X
will echo $y .
. blankinterpretation

Following the above substitutions the resulting characters are broken into nonagads
(blank interpretatiof. For this purpose ‘blanks’ are the characters of the sBiR§. By
default, this string consists of blank, tab and newlifiée null string is not regardedas a
word unless it is quotedFor example,

echo™
will pass on the null string as the first argumenéthq whereas
echo $null
will call echowith no arguments if the variablall is not set or set to the null string.

. file name generation

Eachword is then scanned for the file pattern character® and[...] and an alphabetical
list of file names is generated to replace ward. Eachsuchfile nameis a separateargu-
ment.

The evaluations just described also occur in the list of words associated fathaop. Only substitu-
tion occurs in thevord used for acase branch.

As well as the quoting mechanisms described earlier isamgl“..." a third quoting mechanism is pro-
vided using double quoteswithin double quotes parameter and command substitution occurs but file
name generationand the interpretationof blanks does not. The following characters have a special
meaning within double quotes and may be quoted using

$ parameter substitution
command substitution
ends the quoted string
\ guotes the special charact&s " \

For example,
echo"$x"

will pass the value of the variabkeas a single argument &zho. Similarly,
echo"$*"

will pass the positional parameters as a single argument and is equivalent to

- 18 -

echo"$1 $2..."

The notation$@ is the same a$* except when it is quoted.
echo"$@"

will pass the positional parameters, unevaluateégctmand is equivalent to
echo"$1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

metacharacter

\ $ *) "

n n n n n t
) y n n t n n
" y y n y t n

t terminator

y interpreted

n notinterpreted

Figure 2. Quoting mechanisms

In caseswheremorethanone evaluation of a string is required the built-in commandl may be used.
For example, if the variabl¥ has the valu®y, and ify has the valu@qgr then

eval echo $X

will echo the stringoqr .
In general theeval commandevaluatests arguments (as do all commands) and treats the result as input
to the shell. The input is read and the resulting command(s) executed.example,

wg="eval who grep
$wyg fred

is equivalent to
who|grep fred

In this examplegvalis required since there is no interpretation of metacharasigthas |, following
substitution.

3.5 Error handling

The treatmentof errors detectedby the shell depends on the type of error and on whether the shell is
being used interactivelyAn interactive shell is one whose input and output are connecitetminal
(as determined bytty (2)). A shell invoked with the-i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.
. Input output redirection may failFor example, if a file does not exist or cannot be created.
. The command itself does not exist or cannot be executed.

. The command terminates abnormally, for example, withbas error" or "memory fault". See
Figure 2 below for a complete list of UNIX signals.

. The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next comniaxaept for the last case an error
messageawill be printed by the shell. All remaining errors cause the shell to exit from a command pro-
cedure. An interactive shell will return to read another command from the termBatherrorsinclude

the following.

- 19 -

. Syntaxerrors. e.g.,if ... then... done

. A signal suchas interrupt. The shell waits for the current command, if any, to finish execution
and then either exits or returns to the terminal.

. Failure of any of the built-in commands suchcds
The shell flag-e causes the shell to terminate if any error is detected.

1 hangup

2 interrupt

3* quit

4* illegal instruction

5* tracetrap

6* IOT instruction

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)

10* buserror
11* segmentatiowviolation
12* bad argument to system call

13 write on a pipe with no one to read it
14 alarmclock
15 software termination (frorkill (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a donep if not caught. However, the shell itself
ignoresquit which is the only external signal that can cause a duif signals in this list of potential
interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terfiimaltrap com-
mand is used if some cleaning up is required, such as removing temporaryditesxample,

trap ‘rm /tmp/ps$$; exit2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands
rm tmp/ps$$; exit

exit is another built-in command that terminagsecutionof a shell procedure. The exit is required;
otherwise, after the trap has been taken, the shell will resume executing the proceduptaaettieere
it was interrupted.

UNIX signalscan be handledin one of three ways. They can be ignored, in which case the signal is
never sent to the proces3hey can be caught, in which case firecessmust decidewhat action to

take whenthe signalis received. Lastly, they can be left to cause termination of the process without it
having to take any further actiorif a signal is being ignored on entry to the sipeticedurefor exam-

ple, by invoking it in the background (see 3.7) thep commands (and the signal) are ignored.

The use oftrap is illustrated by this modified version of theuch command (Figure 4).The cleanup
action is to remove the filjeink$$.

- 20 -

flag=
trap ‘'rm —f junk$$; exit’1 2 3 15
for i
do case $i in
—c) flag=N;;
%) if test—f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file\"$i\" does not exist
else >$i
fi
esac
done

Figure 4. The touch command

The trap commandappearsbeforethe creationof the temporary file; otherwise it would be possible for
the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicatedhemandso be executedon
exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argaontet.
The following fragment is taken from tlmhupcommand.

trap” 12315

which causesiangup, interrupt, quiandkill to be ignoredboth by the procedure and by invoked com-
mands.

Traps may be reset by saying
trap 2 3

which resets the traps for signals 2 and 3 to tHefaultvalues. A list of the currentvaluesof traps
may be obtained by writing

trap

The procedurescan (Figure 5) is an example of the uset@p where there is no exit ithe trap com-
mand. scantakes each directory in the current directory, prompts its name,andthenexecutesom-
mands typed at the terminal until an endilaf or aninterruptis received. Interruptsare ignoredwhile
executing the requested commands but cause terminationsgaris waiting for input.

d="pwd"
foriin
do if test—d $d/$i
then cd $d/$i
while echo"$i:"
trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Figure 5. The scan command

read xis a built-in command that reads one line from the standard empiplacesthe resultin the

-21 -

variablex. It returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7 Command execution

To run acommand(otherthana built-in) the shell first creates a new process using the systerfortall

The execution environment for the command includes input, output and the states of signals, and is esta-
blished in the child process before the command is execdthd.built-in commandxecis used inthe

rare caseswhenno fork is required and simply replaces the shell with a new commé&id.example, a

simple version of theohupcommand looks like

trap” 12315
exec §

The trap turns off the signals specified so that they are ignored by subsequently created commands and
execreplaces the shell by the command specified.

Most forms of input output redirection have already been descritvethe followingword is only sub-
jectto parameter and command substitutidvio file name generation or blank interpretation takes place
so that, for example,

echo... >*.c

will write its output into afile whosenameis x.c. Input output specifications are evaluated left to right
as they appear in the command.

> word The standard output (file descriptor 1) is sent to thewfded which is created if it does
not already exist.

> word The standard output is sent to fileord. If the file exists then output is appended (by
seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from thewfded.

< word The standardnput is taken from the lines of shell input that follow up to but not includ-

ing a line consisting only ofvord. If word is quoted then no interpretation of the docu-
ment occurs.|If word is not quoted then parameter and commsuoktitutionoccur and\

is used to quote the charactér$ ° and the first character ovord. In the latter case
\newline is ignored (c.f. quoted strings).

>& digit The file descriptodigit is duplicated using the system cdiip (2) and the result is used
as the standard output.

<& digit The standard input is duplicated from file descripligit.
<&- The standard input is closed.
>&— The standard output is closed.

Any of the abovemay be precededby a digit in which case the file descriptor created is that specified
by the digit instead of the default 0 or Eor example,

... 2>file
runs a command with message output (file descriptor 2) direcfid.to
Lo 2>81

runs a command with its standard output and messagit merged. (Strictly speakingdfile descriptor
2 is created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such as
listx.c | Ipr &

is modified in two ways. Firstly, the default standard input for suchcammandis the empty file
/dev/null . This prevents two processes (the shell and the command), which are rimmacgallel,
from trying to read the same inpu€haos would ensue if this were not the caBer example,

-22 -

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and
INTERRUPT signalsso that they are ignored by the commarithis allows these signals to be used at
the terminal without causing background commands to termindter this reason the UNIX convention

for a signal is that if it is set to 1 (ignored) then it is never changed even for dirsleoriNote that the

shell commandrap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invokiédthe first characterof argument
zero is a minus, then commands are read from thepfitéile.
—c string

If the —c flag is present then commands are read fstning .

-s If the —s flag is present or if no arguments remain then commands are read from the standard
input. Shell output is written to file descriptor 2.

=i If the —i flag is presentor if the shell input and output are attached to a terminal (as tolgityy
then this shell isnteractive. In this case TERMINATE is ignored (so thatl 0 does not kill an
interactive shell) and INTERRUPT is caught and ignored (sowhait is interruptable). In all
cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in parttbe original UNIX shelf and the PWB/UNIX sheft, some
features having been taken from botBimilarities also exist with the command interpreters of the Cam-
bridge Multiple Access Systénand of CTSS.

| would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the
shell. | am also gratefulto the members of the Computing Science Research Center and to Joe Maran-
zano for their comments on drafts of this document.

References

1. B. W. KernighanUNIX for Beginners1978.

2. K. Thompson and D. M. Ritchi&JNix Programmer’s ManualBell Laboratorieq1978). Seventh
Edition.

3. K. Thompson, “The Wix Command Language,” pp. 375-384 Btructured Programming—
Infotech State of the Art Reporinfotech International Ltd., Nicholson House, Maidenhead,
Berkshire, England (March 1975).

4. J. R. MasheyPWB/UNIX Shell TutorialSeptember 30, 1977.

5. D. F. Hartley (Ed.),The Cambridge Multiple Access Systentsers Reference Manudlniver-
sity Mathematical Laboratory, Cambridge, England (1968).

6. P. A. Crisman (Ed.),The Compatible Time-Sharing System,.T. Press, Cambridge, Mass.
(1965).

Appendix A - Grammar

item:

-23-

word
input-output
name = value

simple-command: item

command:

pipeline:

andor:

command-list:

input-output:

file:

case-part:

pattern:

else-part:

empty:
word:
name:

digit:

simple-command item

simple-command

(command-lisf
{ command-lis
for namedo command-lisdone
for namein word ... do command-lisdone
while command-lisdo command-lisdone
until command-lisdo command-listlone
case word in case-part... esac

if command-listhen command-list else-paift

command
pipeline | command

pipeline
andor & & pipeline
andor | | pipeline

andor
command-list
command-lis&
command-list andor
command-lis& andor

> file
< file
>> word
< word

word

& digit

& —_

patterr) command-list;

word
pattern | word

elif command-listhen command-list else-part
else command-list
empty

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

- 24 -

Appendix B - Meta-characters and Reserved Words
a) syntactic

| pipe symbol

&& ‘andf symbol

| | ‘orf’ symbol

; command separator

5 case delimiter

& background commands

O) command grouping

< input redirection

< input from a here document
> output creation

> output append

b) patterns
* match any character(s) including none
? match any single character
[..] match any of the enclosed characters

C) substitution
${..} substitute shell variable
) substitute command output

d) quoting

\ guote the next character
guote the enclosed characters except for
guote the enclosed characters excepthfon "

e) reserved words

if then else dif fi
case in esac
for while until do done

{}

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version ofl¢laen program forinterpreting
CAI scripts on theuNixt operating system, and a setsofiptsthat provide a compu-
terized introduction to the system.

Six current scripts cover basic commands and file handlinggditer, additional
file handling commands, thegnprogram for mathematical typing, the fas” package
of formatting macros, and an introduction ttee C programminglanguage. These
scripts now include a total of about 530 lessons.

Many users from a wide variety bhckgrounddaveusedlearn to acquire basic
UNIX skills. Most usage involves the first two scripts, an introductionNx files
and commands, and tbeix editor.

The second version déarn is about four times faster than the previous one
CPU utilization, and much faster in perceived time because of better overtapnef
puting and printing. It also requires less file space than the first versidany of the
lessons have been revised; new material has beeedto reflect changesand
enhancements ioNIX itself. Script-writing is also easier because of revisions to the
script language.

January 30, 1979

TUNIX is a Trademark of Bell Laboratories.

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Educational Assumptions and Design.

First, the way to teach people how to do somethirtg lkavethemdo it. Scriptsshouldnot con-
tain long pieces of explanation; they should instead frequexsththe studentto do sometask. So
teaching is always by example: the typical script fragment shosma exampleof sometechnique
andthen askghe userto either repeat that example or produce a variation oi\litare intended to be
easy enough that most students will get most questions right, reinforcing the desired behavior.

Most lessons fall into one of three typeBhe simplest presents a lesson and &sks yesor no
answerto a question. The studentis given a chance to experiment before replyifdne script checks
for the correctreply. Problems of this form are sparingly used.

The secondtype asksfor a word or number as an answefor example a lesson on files might
say

How many files are there in the current directorifype “answer N”, where Ns the numberof
files.

The student is expected to respond (perhaps after experimenting) with
answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., repkdingl?7)
is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a tizsket for the student,appropriateparts of the
input or output are monitored, and the student tyjeesly when the task is doneFigure 1 shows a
sampledialog that illustrates the last of these, using two lessons abogtatheoncatenate, i.e., print)
command taken from early in the script that teaches file handhfagt learn lessons are of this form.

After each correct response the computer congratulatesfutientandindicatesthe lessonnumber
that has just been completed, permitting the studergsiartthe script after that lesson. If the answer
is wrong, the studentis offered a chance to repeat the lessdrhe “speed” rating of the student
(explainedin section 5) is given after the lesson number when the lesson is completed successfully; it is
printed only for the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproof way to deterrifirtee studentruly “understands”what
he or she is doing; accordingly, the curr@rn scriptsonly measure performance, not comprehension.
If the student can perform a given task, that is deemed to be “learhing.”

The main point of using the computer is that what the student does is checked for correctness
immediately. Unlike many CAIl scripts, however, these scripts provide few facilities for dealing with
wrong answers. In practice, if most of the answers are not right the script is a failieeyniversal
solution to studenterror is to provide a new, easier scripinticipating possible wrong answers is an
endless job, and it is really easier as well as better to provide a simpler script.

Along with this goesthe assumptiorthat anythingcan be taught to anybody if it can be broken
into sufficiently small piecesAnything not absorbed in a single chunk is just subdivided.

EFigure 1: Sample dialog from basic files script
%Student responses in italics; ‘$’ is the prompt)

EA file can be printed on your terminal

Chy using the'cat' command. Just say

Creat file" where™file" is the file name.
or example, there is a file named

rfood" in this directory. List it

[by saying'cat food"; then typé'ready".

(% cat food

O this is the file

0 named food.

$ ready

0

EGood. Lesson 3.3a (1)

f course, you can print any file withat'.

n particular, it is common to first use
O'ls" to find the name of a file and thécat'
(to print it. Note the difference between
Bhs” which tells you the name of the file,

nd"cat', which tells you the contents.
One file in the current directory is named for
(A President.Print the file, then typéready".
(% cat President
Ceat: can't open President

ready

ESorry, that's not right.Do you want to try againges
Orry the problem again.
Is
Docopy
1
[roosevelt
% cat roosevelt
O this file is named roosevelt
and contains three lines of
0 text.

[$ ready

O

[Good. Lesson 3.3b 0)

0

BThe"cat" command can also print several files

(atonce. In fact, it is namedcat' asanabbreviation
Hor "concatenate...

MOodOoooOOoOoOoooooOoooooooooOoooo oo oo oo oogoooog4oo

To avoid boring the faster students, however, an effort is made in the files and editor scripts to
provide three tracks of different difficultyThe fastest sequence of lessons is aimed at roughly the bulk
andspeedof a typical tutorial manual and should be adequate for review and for well-prepared students.
The next track is intended for most users antbigyhly twice aslong. Typically, for example,the fast
track might present an idea and ask for a variation on the example shown; the normallitfask ask
the student to repeat the example that was shown before attemptém@téon. The third and slowest

-3-

track, which is often three or four times the length of the fast track, is intended to be adequate for any-
one. (The lessonsof Figure 1 are from the third track.)The multiple tracks also mean that a student
repeatinga courseis unlikely to hit the same series of lessons; this makes it profitable for a shaky user
to back up and try again, and many students have done so.

The tracks are not completely distinct, howevBrepending orthe numberof correctanswershe
student has given for the last féd@ssonsthe programmay switch tracks. The driver is actually capable
of following an arbitrary directed graph of lesson sequences, as discussed in secG@mmé. more
structured arrangement, however, is used in all current scripts theasdript writer in organizingthe
material into lessonslt is sufficiently difficult to write lessons that the three-track theory is not fol-
lowed very closely except in the files and editor scripdscordingly, in some cases, the fast track is
produced merely by skipping lessons from the slower trdokothers, there is essentialbnly one
track.

The main reason for using thearn program rather than simply writing the same material as a
workbook is not the selection of tracks, but actual handsxmerience. Learning by doing is much
more effective than pencil and paper exercises.

Learn also providesa mechanicalcheckon performance. The first version in fact would not let
the student proceed unless it received correct answers to the questions it set and it would not tell a stu-
dent the right answerThis somewhat Draconian approach has been moderated in v2rsiogssons
are sometimes badly worded or even just plain wrong; in such cases, the student has no abifirse.
a studentis simply unableto complete one lesson, that should not prevent access to theApestid-
ingly, the currentversion of learn allows the student to skip a lesson that he cannot pass; a “no”
answer to the “Do you want to try again?§uestionin Figure 1 will passto the nextlesson. It is still
true thatlearn will not tell the student the right answer.

Of course thereare valid objections to the assumptions abolre particular, some students may
objectto not understandingvhat they are doing; and the procedure of smashing everything into small
piecesmay provoke the retort “you can't cross a ditch in two jumps.Since writing CAI scripts is
considerablymore tediousthan ordinary manuals, however, it is safe to assume that there will always be
alternatives to the scripts as a way of learnihg.fact, for a reference manual of 3 opdgesit would
not be surprisingto havea tutorial manualof 20 pages and a (multi-track) script of 100 pagékus the
reference manual will exist long before the scripts.

2. Scripts.

As mentioned above, the present scripts try at most to follow a three-track thdurylittle of
the potential complexity of the possible directed graph is employed, since care must be taken in lesson
constructionto seethat every necessaryfact is presented in every possible path through the units.
addition, it is desirable that every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted to checking prereg#isitesample,
before the student is allowed to proceed through etttitor script the script verifies that the student
understands files and is able to tygeis felt that the sooner lack of student preparation is detected, the
easier it will be on the studenAnyone proceeding through the scripts shdutdyetting mostly correct
answers; otherwise, the system will be unsatisfactory both because the wrong habits are being learned
and because the scripts make little effort to degh wrong answers. Unprepared students should not
be encouraged to continue with scripts.

There are some preliminary items which the student knmsiv beforeany scriptscanbe tried. In
particular, the student must know how to connect tojnxt system, set the terminal properly, log in,
and execute simple commands (elgarn itself). In addition, the character erase and line kill conven-
tions (#and @) should be knownlt is hard to see how this much could be taught by computer-aided
instruction,sincea studentwho does not know these basic skills will not be able to run the learning pro-
gram. A brief description on paper is provided (see Appendix A), although assistance will be fareded
the first few minutes.This assistance, however, need not be highly skilled.

TUNIX is a Trademark of Bell Laboratories.

-4 -

The first script in the current set deals with fileslt assumes the basic knowledge above and
teaches the student about the cat, mv, rm, cp anddiff commands.It also deals with the abbrevia-
tion characterg, ?, and [] in file names. It does not cover pipes or I/O redirection, nor does it present
the many options on tHe command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven are
review exercises. Thereare a total of 75 lessons in all three tracks, and the instructional passages typed
at the student to begin each lesson total 4,476 wofti® average lesson thus begins with a 60-word
message. In general,the fast track lessons have somewhat longer introductions, and the slow tracks
somewhat shorter oned.he longest message is 144 words and the shortest 14.

The second script trains students in the use ofuthe context editored, a sophisticated editor
using regular expressions for searchingll editor features except encryption, mark names and ;' in
addressingare covered. The fast track contains 2 prerequisite checks, 93 lessonsa @wlew lesson.

It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of intereSthe ed description in the reference manusl2,572
words long. The ed tutoriaP is 6,138 words long. The fast tratthroughthe ed script is 7,407 words of
explanatory messages, and the teihkcript, 242 lessons, has 15,615 word$e averageed lesson is
thus also about 60 words; the largest is 171 words and the smalle§h&@riginaled script represents
about three man-weeks of effort.

The advanced file handling script deals wi#hoptions, /O diversion, pipes, and supporting pro-
grams likepr, wc, tail, spell andgrep. (The basic file handling script is a prerequisitét.)is not as
refined as the first two scripts; this is reflected at least partly in the fact that it prowidbsessof a
full three-track sequence than they d®n the other hand, since it is perceivasl‘advanced,” it is
hoped that the student will have somewhat more sophistication and be better able to copatwith it
reasonably high level of performance.

A fourth script covers thegnlanguage for typing mathematic§.his script must be run on a ter-
minal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based terminals, or
the nearly extinct Model 37 teletype. Again, this script is relatively short of trackef 76 lessons, only
17 arein the secondtrack and 2 in the third trackMost of these provide additional practice for stu-
dents who are having trouble in the first track.

The —ms script for formatting macrosis a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubitediypersededh the future. Further-
more, the linear style of a single learn script is somewhat inappropriatieeforacros,sincethe macro
package is composed of many independent features, and few users need all df theoid be better
to have a selection of short lesson sequences dealing with the features independently.

The script on C is in a state of transitioh.was originally designed to follow a tutoriah C, but
that document has since become obsoldtee current script has been partially converted to follow the
order of presentation ifthe C Programming Languadehut this job is not completeThe C script was
never intended téeachC; ratherit is supposed to be a series of exercises for which the computer pro-
vides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material whichuamny userwill need to know to
make effective useof the system. With enlargement of the advanced files course to include more on the
command interpreter, there will be a relatively complete introductiowNiXx available vialearn.
Although we make no pretense thaarn will replace other instructional materials, it should provide a
useful supplement to existing tutorials and reference manuals.

3. Experience with Students.

Learn has been installed on many differemtix systems. Most of the usage is on the first two
scripts, so these are more thoroughly debugged and poligked.(random)sampleof userexperience,
the learn program has been used at Bell Labs at Indian Hill for 10l&8&onsin a four month period.
About 3600 of theseare in the files script, 4100 in the editor, and 1400 in advanced filEse passing
rate is about 80%, that is, about 4 lessons are passed for every one Tadedhave beer86 distinct
users of the files script, and 58 of the edit@n our systemat Murray Hill, there have beemearly

-5-

2000lessonsover two weeks that include Christmas and New Yedsers have ranged in age from six
up.

It is difficult to characterize typical sessions with the scriptany instancesexist of someone
doing one or two lessons and then logging out, as do instarficesmeonepausingin a script for
twenty minutes or moreln the earlier version diearn, the averagesession in the files course took 32
minutes and covered 23 lessoriBhe distribution is quite broad and skew&dwever;the longestses-
sion was 130 minutesand there were five sessions shorter than five minufése average lesson took
about 80 seconds. These numbers are roughly typical for non-programmetsyia expert can do the
scripts at approximately 30 seconds per lesson, most of which is the system printing.

At presentworking througha section of the middle of the files script took about 1.4 seconds of
processor time per lesson, and a system expert typing quickly took 15 seconds of real time per lesson.
A novice would probably take at least a minufehus a UNIX system could support ten students work-
ing simultaneously with some spare capacity.

4. The Script Interpreter.

The learn program itself merely interprets script#. provides facilities for the script writdo cap-
ture studentresponsesand their effects, and simplifies the job of passing control to and recovering con-
trol from the student.This section describes the operation and usagheodiriver program,and indi-
cates what is required to produce a new scripeaders only interested in the existing scripts may skip
this section.

The file structure used Hgarn is shown inFigure 2. There is one parent directory (namlédal)
containing the script dataWithin this directory are subdirectories, one for each subject in which a
courseis available, one for logging (namddg), and one in which user sub-directories are created
(namedplay). The subject directory contains master copies ofealonsplus any supportingmaterial
for that subject. In a given subdirectory,each lesson is a single text fild.essons are usually named
systematically; the file that contains lessors calledLn.

Figure2: Directory structure fofearn

(other courses)

O O
O O

. O
i 0
E play E
0 studentl 0
0 files for studentl... [
O student2 0
g files for student2... O
O) O
O files O
E LO.1a lessons for files cours%

LO.1b

O O
O O
O dit O
0 editor 0
O O
O O
O O
H H

log

Whenlearn is executed, it makes a private directory for tiserto work in, within the learn por-
tion of the file system. A fresh copy of all the files used in each lesson (mostly data for the student to
operate upon) is made each time a student stdessan,so the script writer may assumethat every-
thing is reinitialized each time a lesson is enteréthe student directory is deleted after each session;
any permanent records must be kept elsewhere.

-6 -

The script writer must provide certain basic items in each lesson:
(1) the text of the lesson;
(2) the set-up commands to be executed before the user gets control;
(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) theevaluatingcommandgso be executed after the user has finished the lesson, to decide whether
the answer is right; and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved in
script production is in planning lessons, writing tutorial paragraphs, and coding tests of student perfor-
mance.

The basicsequence of events is as followBirst, learn creates the working directoryThen, for
each lessornlgarn readsthe scriptfor the lesson and processes it a line at a tiffiee lines in the script
are: (1) commands to the script interpreter to print something, to create a files, to test sonaéthing,
(2) text to be printed or put in a file; (3) other lines, which are sent to the shell to be exédntetine
in each lesson turns control over to the user; the user can ruwNnengommands. The user mode ter-
minates when the user typgss, no, ready, or answer. At this point, the user’'s work itested;if the
lesson is passed, a new lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.

EFigure 3: Sample Lesson

print
aléf course, you can print any file witbat'.
On particular, it is common to first use
O's" to find the name of a file and thécat
Go print it. Note the difference between

'Is", which tells you the name of the files,
rand“cat’, which tells you the contents.
[One file in the current directory is named
Ch President.Print the file, then typéready".
Gtcreate roosevelt

this file is named roosevelt
[and contains three lines of
0 text.
[Hcopyout

user

uncopyout
rfail —3 .ocopy>X1
(#cmp X1 roosevelt
[Hlog
Gtnext

2b 2

OO0 O00000000D00D00g0O00ooOoooOOO

Lines which begin with# are commands to tHearn script interpreter.For example,
#print

causes printing of any text that follows, up to the next line that begins with a sharp.
#print file

prints the contents dfle; it is the same asat file but has less overheadBoth forms of#print have the
added property that if Bessonis failed, the#print will not be executed the second time through; this

-7-

avoids annoying the student by repeating the preamble to a lesson.
#create filename

creates a file of the specified name, and copies any subsequent text#ipptthafile. Thisis usedfor
creating and initializing working files and reference data for the lessons.

#Huser

gives control to the student; each line he or she types is passed to the shell for exdheiguser
mode is terminated when the student types ongesfno, ready or answer. At that time, the driver
resumes interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file.cafigd This lets the
script writer interrogate the student’s responses upon regaining control.

#copyout
#uncopyout

Between these commands, any material typed at the student by any piogmpiedto the file .ocopy.
This lets the script writer interrogate the effect of what the student typed, which true belietles in
performance theory of learning usually prefer to the student’s actual input.

#pipe

#unpipe
Normally the student input and the script commands are fed tanie command interpreter (the
“shell”) oneline at a time. This won't do if, for example, a sequence of editor commands is provided,
sincethe input to the editor must be handed to the editor, not to the skeltordingly, the material
between#pipe and #unpipecommands is fed continuously through a pipe so that such sequences work.
If copyoutis also desired theopyoutbrackets must include th@pe brackets.

There are several commands for setting status after the student has attempted the lesson.
#cmp filel file2

is an in-line implementation afmp, which compares two files for identity.
#match stuff

The last line of the student’s inpigtcomparedo stuff, and the success or fail status is set according to
it. Extraneous things like the womhswer are stripped before the comparison is matdibere may be
several#match lines; this providesa convenient mechanism for handling multiple “right” answers.
Any text up to a# on subsequent lines after a succes#fmbtch is printed;this is illustrated in Figure

4, another sample lesson.

#bad stuff

This is similar to#match, exceptthatit corresponds to specific failure answers; this can be used to pro-
duce hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fail
print a message upon success or failure (as determined by some previous mechanism).
When the student types one of the “commangss, no, ready, or answer, the driver terminates
the #user command, and evaluation of the student’s woak begin. This can be done either by the
built-in commands above, such #wnatch and#cmp, or by status returned by normalix commands,
typically grep andtest. The last command should return status true (0) if the task was done success-

fully and false (non-zero) otherwise; this status return tells the driver whethet thre studenhassuc-
cessfully passed the lesson.

Performance can be logged:
#log file

EFigure 4: Another Sample Lesson

print

hat command will move the current line
(1o the end of the file?Type
O'answerCOMMAND", where COMMAND is the comman
Qtﬁcopyin

user
[#uncopyin
(#match m$
¥match .m$
CUms$" is easier.

log

[ftnext
£63.1d 10

EDDDDDDDDDD%DDDDDD

writes the date, lesson, user name and speed rating, sinctess/failuréndication on file. The com-
mand

#log

by itself writes the logging information in the logging directory within tharn hierarchy, and is the
normal form.

#next

is followed by a few lines, each with a successor lesson name and an ogesddatingonit. A typ-
ical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed ratinguoitsl0
25.2a for student with speed near 5, and 25.3a for speed né&pe2d ratings ammaintainedfor each
session with a student; the rating is increased by one eaclthéestudentgets a lessonright and
decreasedy four each time the student gets a lesson wrongus the driver tries to maintain a devel
such that the users get 80% right answdrse maximumrating is limited to 10 afd theminimumto O.
The initial rating is zero unless the studeft specifies a differeft rating when starting a session.

If the student passes a lesson, a new lesson is sedected and the process Ifefeassudent
fails, a false status is returned and the program reverts to the previousdedddas anotheralterna-
tive. If it can not find another alternative, it skips forward a lessoye, bye, which causes a graceful
exit from thelearn system. Hanging up is the usual novice’'s way out.

The lessons mayorm an arbitrary directed graph, although the present program imposes a limita-
tion on cycles in that it will not present a lesson twitehe samesession. If the studenis unableto
answer one of the exercises correctly, the driver searches for a priegasoswith a setof alternatives
as successors (following thmext line). From the previous lesson with alternatives one ragstaken
earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of response,
or try to estimate the elegance of the answer, or provide detailed analysis of wrong ansesssn
writing is so tedious already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on featuresnok that are not available on many other
operating systemsThese include the ease of manipulating files @inectories file redirection,the abil-
ity to use the command interpreter as just another program (even in a pipslme)andstatustesting
and branching, the ability to catch signals like interrupts, @hcoursethe pipeline mechanismitself.

-9-

Although some parts dearn might be transferable to other systerssmegeneralitywill probablybe
lost.

A bit of history: The first version ofearn had fewer built-in words inhe driver program,and
made more use of the facilities wfix. For example, file comparison was ddmecreatinga cmp pro-
cess, rather than comparing ttveo files within learn. Lessons were not stored as text files, but as
archives. There was no concept of the in-line document; efmt had to be followed by a file name.
Thusthe initialization for eachlessonwas to extract the archive into the working directory (typically 4-8
files), then#print the lesson text.

The combination of such things maldarn slower. The new version is about 4 or 5 times faster.
Furthermore, it appears even faster to the user because in a typical lesson, the pritheéngessage
comes first, and file setup witkcreate can be overlappedwith the printng, so that when the program
finishes printing, it is really ready for the user to type at it.

It is alsoa great advantage to the script maintainer that lessons are now just ordinary text files.
They can be edited without any difficulty, amdix text manipulation tools can be applied to thefrhe
result has been that there is much less resistance to going in and fixing substandard lessons.

5. Conclusions

The following observations can be made absetretariestypists, and other non-programmers
who have usetkarn:

(& A novice must have assistance with the mechanics of communicating wittoitifguterto get
throughto the first lessonor two; once the first few lessons are passed people can proceed on their
own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with coniputers.
would help if there were a low level reference cardudarx to supplement the existing program-
mer oriented bulky manual and bulky reference card.

(c) The concept of “substitutable argument” is hard to grasp, and requires help.
(d) They enjoy the system for the most pakotivation mattersa greatdeal, however.

It takes an hour or two for a novice to get throughdtipt on file handling. The total time for a rea-
sonablyintelligent and motivated novice to proceed from ignorance to a reasonable ability to create new
files and manipulate old ones seems to be a few days, with perhaps half of each dayn ghent
machine.

The normal way of proceeding has been to have students in the same room with someone who
knowsuNIx and the scripts.Thus the student is not brought to a Hltdifficult questions. The burden
on the counselor, however, is much lower than that on a teacher of a ctdesdly, the students
should be encouraged to proceed with instruction immediately prior to their actual thescofputer.
They should exercise the scripts on the same computer and the same kind of termihay thiflt later
usefor their real work, and their first few jobs for the computer should be relatively easy ohiss,
both training and initial work should take place on days whentire hardware and software are work-
ing reliably. Rarely is all of this possible, but tliboserone comesthe betterthe result. For example,
if it is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening, it takes
some sophistication and experience to distinguish an infinite Baw but functioning program, a
program waiting for the user, and a broken machine.*

One disadvantage of training witbarn is that studentscometo depend completely on the CAI
system,and do not try to read manuals or use other learning aiflkis is unfortunate, not only because
of the increased demands for completeness and accuracy of the scripts, but because the scripts do not
cover all of theunix system. New users should have manuals (appropriate for their level) and read
them; the scripts ought to be altered to recommend suitable documents and urge students to read them.

* We have everknown an expert programmer to decide the computer was broken when he had simply left his terminal
in local mode. Novices have great difficulties with such problems.

-10 -

There are several other difficulties whiahe clearly evident. From the student’sviewpoint, the
most serious is that lessons still crop up which simply daamjpassed. Sometimeshis is due to poor
explanationshut just asoftenit is some error in the lesson itself — a botched setup, a missing file, an
invalid test for correctness, or some system facility that doesn’t work on the local systeesame
way it did on the development systertt. takesknowledgeand a certain healthy arrogance on the part
of the user to recognize that the fault is not hikiens,but the scriptwriter's. Permittingthe studento
get on with the next lesson regardless does alleviate this somewhat, and the logging facilities make it
easy to watch for lessons that no one can pass, but it is still a problem.

The biggest problem with the previolgsarn was speed (or lack thereof) — it was often excruciat-
ingly slow and made a significant drain on the systefhe current version so far does not seem to have
that difficulty, although somecripts, notably egn, are intrinsically slow.eqn, for example, must do a
lot of work even to print its introductions, let alone check the student responses, but delay is perceptible
in all scripts from time to time.

Another potential problem is that it is possible to brieskn inadvertently, by pushinmterruptat
the wrong time, or by removing critical files, or any number of similar slijse defensesgainstsuch
problems have steadily been improved, to the point where most students should notliffintidees.
Of course, it will always be possible to brdakrn maliciously, but this is not likely to be a problem.

One area is more fundamental — somex commands are sufficiently global their effect that
learn currently does not allow them to be executed at @the most obvious isd, which changes to
anotherdirectory. The prospect of a student who is learning about directories inadvertently moving to
some random directory and removing files has deterreflons evenwriting lessonson cd, but ulti-
mately lessons on such topics probably should be added.

6. Acknowledgments

We are grateful to all those who havied learn, for we have benefited greatly from their sugges-
tions andcriticisms. In particular,M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M. J. McAl-
pin have provided substantiafeedback. Conversations with E. Z. Rothkopf also provided manyhef
ideas in the systemWe are also indebted to Don Jackowski for serving as a guinea pig for the second
version, and to Tom Plum for his efforts to improve the C script.

References
1. B. F. Skinner, “Why We Need Teaching Machinesfarvard Educational Revie®1, pp.377-398
(1961).

2. K. Thompson and D. M. RitchiéJNix Programmer’s ManualBell Laboratories (May 1975)See
sectioned (1).

3. B. W. KernighanA Tutorial Introduction to the Unix Editor ed974.
4. B. W. Kernighan and D. M. Ritchidhe C Programming LanguagBrentice Hall (1978).

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing documents on
the UNIX system. Documents may be produced on either the phototypesetter or a on a
computer terminal, without changing the input.

The macrosprovide facilities for paragraphs, sections (optionally with automatic
numbering), page titles, footnotes, equations, tables, two-column format, and cover
pages for papers.

This memo includes, as an appendix, the text of the “Guide to Preparing Docu-
mentswith —ms” which contains additional examples of features ofs-

This manual is a revision of, and replaces, “Typing Documents on UNIX,”
dated November 22, 1974.

November 13, 1978

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandundescribesa packageof commands to produce papers using the
troff and nroff formatting programs on thenix system. As with otherroff-derived programs, text is
preparednterspersedvith formatting commandsHowever, this package, which itself is writtentioff
commands, provides higher-level commands than those provided withashietroff program. The
commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, plaee eeading“.PP”
beforeeachparagraph. This will produce indenting and extra space.

Alternatively, the command.LP that was used here will produce a left-aligned (block) paragraph.
paragraph spacing can be changed: see below under “Registers.”

Beginning. For a document with a paper-type cover sheet, the input should start as follows:

[optional overall format .RP see below]

TL

Title of document (one or more lines)

AU

Author(s) (may also be several lines)

Al

Author’s institution(s)

AB

Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .ll here to change.
AE (abstracend)

text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no absiaabo author’s institution) just omit the
corresponding fields and command linéBhe wordABSTRACT can be suppressed by writing “.AB no”

for “.AB”. Severalinterspersed .AU and .Al lines can be used for multiple authbh& headings are

not compulsory: beginning with a .PP command is perfectly OK and will just start printing an ordinary
paragraph. Warning: You can't just begin a document with a line of te8ome -ms command must
precede any text inputWhen in doubt, use .LP to get proper initialization, although any of the com-
mands .PP, .LP, .TL, .SH, .NH is good enoudhgure 1 shows the legal arrangement of commands at
the start of a document.

Cover Sheets andl First Pages. The first line of a document signals the general forohdhe first
page. In particular, if it is ".RP" a cover shewith title and abstractis prepared. The defaultformatis
useful for scanning drafts.

In general -ms is arranged so that only one form of a document need be stored, containing all
information; the first command gives the format, and unnecessary items for that format are ignored.

Warning: don't put extraneous material between the .TL andcémEmands. Processingof the
titing itemsis special, and other data placed in them may not behave as you ekpett.forget that
some -ms command must precede any input text.

Page hezdings. The -ms macros, by default, will print a page headiogtaininga pagenumber
(if greater than 1).A default page footer is provided only nroff, where the date iased. The user

2.

can make minor adjustments to the page headings/footings by reddfirisgings LH, CH, and RH

which are the left, center and right portions of the page headings, respectively; and the strings LF, CF,
and RF, which are the left, center and right portions of the page faetermore compleXormats,the

user can redefine the macros PT and BT, which are invoked respectively at the top and bottom of each
page. The margins(taken from registers HM and FM for the top and bottom margin respectively) are
normally 1 inch; the page header/footer are in the middle of that sp@he. user who redefines these
macros should be careful not to change parameters sysbirdssize or font without resettingthem to

default values.

Muilti-colummm formats. If you place the
command “.2C” in your document, the docu-
ment will be printed indouble column format
beginningat that point. This feature is not too
useful in computer terminal output, bist often
desirable on the typesetterThe command
“.1C” will go back to one-column format and
also skip to anew page. The “.2C”" command
is actually a special case of the command

.MC [column width [gutter width]]

which makes multiple columns with the
specified column and guttewidth; as many
columns as will fit across the page are used.
Thus triple, quadruple, ... column pages can be
printed. Whenever the number ofolumnsis
changed (except going from full width to some
larger number of columns) a new page is started.

Headings. To produce a special heading,
there are two commandsdf you type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (1, 2, 3, ...), in boldfac&or example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads
Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number added:

Care and Feeding of Directors

Every section heading, okither type,
should be followed by garagraphbeginning
with .PP or .LP, indicating the end of the head-
ing. Headings may contain more than one line
of text.

The .NH command also supports more
complex numbering schemeslf a numerical
argument is given, it is taken to be a “level”
number and an appropriate sub-sectmammber
is generated. Larger level numbers indicate
deeper sub-sections, as in this example:

.NH

Erie-Lackawanna

.NH 2

Morris and Essex Division
.NH 3

Gladstone Branch

.NH 3

Montclair Branch

.NH 2

Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division
2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit “.NH 0" will reset the
numbering of level 1 to one, as here:
.NH 0

Penn Central

1. Penn Central

Indented paragrapis. (Paragraphs with
hanging numbers, e.g. references.)The
sequence

AP [1]

Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
AP [2]

Text for second paragraph, ...

produces

-3-

[1] Text for first paragraph, typed normally
for as long as you would like on as many
lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs mayfdowed

by an ordinary paragraph beginning with .PP or
.LP, depending on whether you wishdenting

or not. The command .LP was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exampla,
plain block indent is produced.

AP

This material will

just be turned into a

block indent suitable for quotations or
such matter.

LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified aftdre label (in
characterpositions) and will remain in effect
until the next .PP or .LP.Thus, the general
form of the .IP command contains tweddi-
tional fields: the label and the indenting length.
For example,

AP first: 9

Notice the longer label, requiring larger
indenting for these paragraphs.

.IP second:

And so forth.

LP

produces this:

first; Notice the longerlabel, requiring

larger indenting for these paragraphs.
second: And so forth.

It is also possible to produce multiple nested
indents; the command .RS indicates timt next
AP starts from the current indentation level.
Each .RE will eat up one level of indentisg
you should balance .RS andRE commands.
The .RS command should be thought of as
“move right” and the .RE commanéds “move
left”. As an example

AP 1.

Bell Laboratories
.RS

AP 1.1
Murray Hill
AP 1.2
Holmdel
AP 1.3
Whippany
.RS

AP 1.3.1
Madison
.RE

AP 1.4
Chester
.RE

.LP

will result in

1. Bell Laboratories
1.1
1.2
1.3

MurrayHill
Holmdel
Whippany
1.3.1 Madison
1.4 Chester

All of these variations on .LReave the right
margin untouched. Sometimes, for purposes
such as setting off a quotation, a paragraph
indented on both right and left is required.

A single paragraph like this is
obtained by preceding it with .QP.
More complicated material (several
paragraphs) should be bracketed
with .QS and .QE.

Emplhasis. To get italics (on the typesetter) or
underlining (on the terminal) say

A

as much text as you want
can be typed here

R

as was done fathese three wordsThe .R com-
mand restores the norm@isually Roman)font.
If only one word is to be italicized, it maye
just given on the line with the .I command,

.I word

and in this caseno .R is needed to restore the
previous font. Boldface can be produced by

.B

Text to be set in boldface
goes here

.R

and also will be underlinedn the terminal or
line printer. As with .I, a single word can be
placed in boldface by placing it on tkameline
as the .B command.

A few size changes cape specifiedsimi-
larly with the commands .LG (make larger), .SM
(make smaller), and .NL (return twormalsize).
The size change is two points; the commands
may be repeated foncreasecrect (here one.NL
canceled two .SM commands).

If actual underliningas opposed to italiciz-
ing is required on the typesetter, the command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed betweelines
with the commandsFS (footnote) and .FE (foot-
note end) will be collected, remembered, and
finally placed at the bottom of the current page*.
By default, footnotes are 11/12th the length of
normal text, but this can be changesing the
FL register (see below).

Displays and Tables To prepare
displays of lines, such as tables, in whitte
lines should not be re-arranged, enclose them in
the commands .DS and .DE

.DS

table lines, like the
examples here, are placed
between .DS and .DE

.DE

By default, lines between .D%nd .DE are
indented and left-adjustedYou can alsccenter
lines, or retain the left marginLines bracketed
by .DS C and .DE commands arentered(and
not re-arranged); lines bracketed by .DS L and
.DE are left-adjusted, not indented, anot re-
arranged. A plain .DS is equivalent to .DS I,
which indents and left-adjustsThus,

these lines were preceded
by .DS C and followed by
a .DE command;

whereas

* Like this.

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a
variant.DS B that makes the display into a left-
adjusted block of text, and then centers that
entire block. Normally a display is kept
together, on one pagelf you wish to have a
long display which may be split across page
boundaries, use .CD, .LD, or .ID in place of the
commandsDS C, .DS L, or .DS | respectively.
An extraargumentto the .DS | or .DS command
is taken as an amount to indenNote: it is
temptingto assume that .DS R will right adjust
lines, but it doesn’t work.

Boxing words ar lines. To draw rec-
tangular boxes around words the command
.BX word

will print Mord[as shown. The boxes will not
be neat on a terminal, and this should bet
used as a substitute for italics.

Honger pieces of text maye boxed by enclos- [
fing them with .B1 and .B2: B
. B1 0
0 text... O
0 B2 =
0 a
[as has been done here. H

Keeping blocks together. If you wish to
keep a table or other block of linexgetheron a
page, there are “keeprelease” commands. If
a block of lines preceded by .KS afallowed
by .KE does not fit on the remainder tfe
currentpage,it will begin on a new pageLines
bracketed by .DS and .DE commands are
automatically kept together this wayThere is
also a “keep floating” command: if the block to
be kept together is preceded by .KF instead of
.KS and does not fit othe currentpage,it will
be moveddown throughthe text until the top of
the next page.Thus, no large blank spaaeill
be introduced in the document.

Nroff/Troff commandis. Among the useful
commands from the basiormatting programs
are the following. They all work with both
typesetter and computer terminal output:

.bp - begin new page.

.br - “break”, stop running text
from line to line.

.Sp n - insert n blank lines.

.na - don’t adjust right margins.

Date. By default, documents produced
computer terminals have the date at the bottom
of each page; documents produced on the
typesetter don't. To force the date, sayDA".

To force no date, say “.ND”.To lie aboutthe
date, say “.DA July 4, 1776" which puts the
specifieddate at the bottom of each pag&he
command

.ND May 8, 1945

in ".RP" format places the specified date on the
cover sheet and nowhere els@lace this line
before the title.

Signature lin@. You can obtain a signa-
ture line by placing the command .SG in the
document. The authors’ names will be output in
place of the .SG line.An argument to .SG is
used as a typing identification line, and placed
after the signatures. The .SG command is
ignored in released paper format.

Regisirs. Certain of the registersised
by —ms can be altered to change default set-
tings. They should be changedith .nr com-
mands, as with

.nrPS 9

to make the default point size 9 poinif the
effect is needed immediately, the normebff
command should be used in addition to chang-
ing the number register.

Register Defines Takes Default
effect

PS pointsize nextpara. 10
VS line spacing nextpara. 12pts
LL line length nextpara. 6"
LT title length nextpara. 6"
PD paraspacing nextpara. 0.3VS
Pl para.indent nextpara. 5ens
FL footnotelength nextFS 11/12LL
CW column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/27'
HM top margin next page 1"
FM bottom margin next page 1"

You may also alter the strings LH, CH, and RH
which are the left, center, and right headings
respectively; and similarly LF, CF, and RF
which are strings in the padeoter. The page

number onoutput is taken from register PN, to

permit changing its output styleFor more com-
plicated headers and footers timacrosPT and
BT can be redefined, as explained earlier.

Accants. To simplify typing certain
foreign words, strings representing common
accent marks are definedThey precede the
letter over which the mark is to appedrlere
are the strings:

Input Output Input Output
*'e é *"a a
*e é *Ce é
*:u G *.c c
*e e

Use. After your document is prepareahd
stored on a file, you caprint it on a terminal
with the command*

nroff —msfile

and you can print it on the typesetter with the
command

troff —msfile

(many options are possible). In each case, if
your document is stored wseveralfiles, just list
all the filenames where we have used “filelf.
equations or tables are usedyn and/ortbl must
be invoked as preprocessors.

Referenmes andl further study. If you
have to do Greek or mathematics, sgm [1]
for equation setting. To aid eqm users,—ms
providesdefinitions of .EQ and .EN which nor-
mally centerthe equation and set it off slightly.
An argument on .EQ is taken b® anequation
numberand placed in the right margin near the
equation. In addition, there arehree special
argumentsto EQ: the lettersC, I, and L indi-
cate centered (default), indented, and left
adjusted equations, respectively. If there is both
a format argument and an equation number, give
the format argument first, as in

.EQL (1.33)
for a left-adjusted equation numbered (1.3a).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text
with a little space. A very long tablewith a
heading may be broken acrogagesby begin-
ning it with .TS H instead of .TS, and placing
the line .TH in the table data after the heading.

* |f .2C was used, pipe tharoff output throughcol;
make the first line of the input “.pi /usr/bin/col.”

-6 -

If the table has no heading repeated from page
to page,just usethe ordinary .TS and .TE mac-
ros.

To learn more aboutroff see [3] for a
general introduction, and [4] for the full details
(experts only). Information on related UNIX
commands is in [5].For jobs thatdo not seem
well-adaptedo —ms, consider other macro pack-
ages. It is often far easier tawrite a specific
macro packagedor such tasks as imitating par-
ticular journals than to try to adapms.

Acknowledgment. Many thanks aredue
to Brian Kernighan for his helfn the design
and implementation of this package, and h&
assistance in preparing this manual.

References

[1] B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics — Use@uide
(2nd edition), Bell Laboratories Comput-
ing Science Report no. 17.

[2] M. E. Lesk,Tbl — A Program to Format
Tables, Bell Laboratories Computingci-
ence Report no. 45.

[3] B. W. Kernighan,A Troff Tutorial, Bell
Laboratories, 1976.

[4] J. F. Ossanna, Nroff /Troff Reference
Manual, Bell Laboratories Computin&ci-
ence Report no. 51.

[5] K. Thompson and DM. Ritchie, UNIX

Programmer’'s ManualBell Laboratories,
1978.

1C
2C
AB
AE
Al

AU

DA
DE
DS
EN
EQ
FE
FS

P

KE
KF
KS

Return to single column format.
Start double column format.
Begin abstract.

Endabstract.

Specify author’s institution.
Specify author.

Begin boldface.

Provide the date on each page.
Enddisplay.

Start display (also CD, LD, ID).
End equation.

Begin equation.

End footnote.

Begin footnote.

Begin italics.

Begin indented paragraph.
Releasekeep.

Begin floating keep.
Startkeep.

-7-

Appendix A
List of Commands

LG
LP

ND
NH
NL
PP

RE
RP
RS
SG
SH
SM
TL

UL

Register Names

Increase type size.
Left alignedblock paragraph.

Change or cancel date.
Specify numbered heading.
Return to normal type size.
Begin paragraph.

Return to regular font (usually Roman).
End one level of relative indenting.
Use released paper format.

Relative indent increased one level.
Insert signature line.

Specify section heading.

Change to smaller type size.
Specifytitle.

Underline one word.

The following register names are used byns internally. Independent use of these names in

one’s own macrosmay produceincorrectoutput. Note that no lower case letters are used in anmps-
internal name.

#T
1T
AV
Cw

1C
2C
Al
A2
A3
A4

Number registers used imms

DW GW HM IQ LL NA 0J PO T. TV
EF H1 HT IR LT NC PD PQ B VS
FL H3 IK Kl MM NF PF PX TD YE
FM H4 IM L1 MN NS PI RO TN YY
FP H5 IP LE MO Ol PN ST TQ ZN
String registers used inms
A5 CB DW EZ I KF MR R1 RT TL
AB CcC DY FA 11 KQ ND R2 S0) ™
AE CD El FE 12 KS NH R3 S1 TQ
Al CF E2 FJ 13 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP R5 SG TT
B CM E4 FN 15 LG oD RC SH UL
BG CS E5 FO ID LP OK RE SM WB
BT CT EE FQ IE ME PP RF SN WH
C D EL FS IM MF PT RH SY WT
C1 DA EM FV P MH PY RP TA XD
Cc2 DE EN FY 1Z MN QF RQ TE XF
CA DS EQ HO KE MO R RS TH XK

Al

AE

NH, SH

PP, LP

text ...

Figure 1

A Guide to Preparing
Documents with-ms

M. E. Lesk

Bell Laboratories August1978

This guide gives some simple examples of
document preparation on Bell Labs computers,
emphasizing the use of thans macro package.It
enormously abbreviates information in
1. Typing Doauments an UNIX amii GCQS, by
M. E. Lesk;
2. Typestting Matmematics — Usels Guide, by
B. W. Kernighan and L. L. Cherry; and
3. Tbl — A Program to Format Tables, by M. E.
Lesk.
These memos are all included in thegNIX
Programmers Manusd, Volume 2. The new user
should also haveA Tutorial Introduction to the
UNIX Text Editor, by B. W. Kernighan.

For more detailed information, readdvenced

Editing am UNIX and A Troff Tutorial, by B. W.

Kernighan, and (for expertfroff/Troff Referenme

Manuwd by J. F. Ossannalnformation on related
commands is found (for UNIX users) WNIX for

Beginners by B. W. Kernighan and thdJNIX

Programmerss Manuwd by K. Thompson and D. M.
Ritchie.

Contents
ATM ... 2
A released paper. 3
An internal memo, and headings. . . . 4
Lists, displays, and footnotes 5

Indents, keeps, and double column . . 6
Equations and registers. 7
Tables and usage

Throughout the examples, input is shown in
this Helvetica sans serif font

while the resulting output is shown in
this Times Roman font.

UNIX Document no. 1111

2

Commands for a TM

.TM 1978-5b3 99999 99999-11

.ND April 1, 1976

TL

The Role of the Allen Wrench in Modern
Electronics

AU "MH 2G-111" 2345

J. Q. Pencilpusher

AU "MH 1K-222" 5432

X. Y. Hardwired

Design

.AB

This abstract should be short enough to
fit on a single page cover sheet.

It must attract the reader into sending for
the complete memorandum.

AE

.CS10212567

.NH

Introduction.

.PP

Now the first paragraph of actual text ...

Last line of text.

.SG MH-1234-JQP/XYH-unix
.NH

References ...

Commands not needed in a particular format are ignored.

Cover Sheet for TM

@ Bell Laboratories

This information is for employees of Bell Laboratorie€El 13.9-3)

Title- The Role af the Allen Wren¢h
in Modem Electronics

Date-April 1, 1976

T™- 19B35b3
Other Keywords-Tools

Design

Author
J. Q. Pemilpudier
X. Y. Hardwired

Location Ext. ChargingCase-99999
MH 2G-111 2345Filing Case-99999%a
MH 1K-222 5432

ABSTRACT

This abstract should be short enoughfit
on a single page coveheet. It mustattractthe
readerinto sending for the complete memoran-

dum.
O
PagesText 10 Other 2 Total 12 O
O
No. Figures 5 No.Tables 6 No. Refs. 7 a0
O

OO0O000O0QoOoOO00000000000000O0000000O0000000O000ooOopoooOoOgm

E-1932-U(6-73)

OoOO0O00O000

SEE REVERSE SIDE FOR DISTRIBUTION LISTE

]
a

3

A Releasd Paper with Mathemeatics

EQ
delim $$
.EN
.RP

... (as for a TM)

.CS10212567

.NH

Introduction

PP

The solution to the torque handle equation
EQ ()

sum from O toinf F (xsubi)=G (x)

.EN

is found with the transformation $ x = rho over
theta $ where $ rho = G prime (x) $ and $theta$
is derived ...

The Role of the Allen Wrend¢h
in Modem Electronics

J. Q. Pencilpusher
X. Y. Hardwired

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This abstractshouldbe short enough to fit on a sin-
gle page cover sheetlt must attract the reader into
sending for the complete memorandum.

April 1, 1976

OO00O0oOooooooooooooooooooon| @Moooooooooooooooooooooooooooag

O
O

The Role af the Allen Wrendéh
in Modem Electronics

J. Q. Pencilpusher
X. Y. Hardwired

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
The solution to the torque handle equation

2F()=G(x) @
0

is found with the transformationzg where p=G'(x) and 6 is

derived from well-known principles.

OOoOoOoOOOoOoOoooooooooooooooooono OoooOooooooooooooooooooooooooon

An Intema Memorandium

M

.ND January 24, 1956

TL

The 1956 Consent Decree

AU

Able, Baker &

Charley, Attys.

PP

Plaintiff, United States of America, having filed
its complaint herein on January 14, 1949; the
defendants having appeared and filed their
answer to such complaint denying the
substantive allegations thereof; and the parties,

by their attorneys, ...

Bell Laboratories
Subject: The 1956Consent Decree date: January 24, 1956

from: Able, Baker &
Charley, Attys.

OoOoOoOoOooooooOoOooOoo
OOoOoOoooooooOon

Plaintiff, United States of America, having filés complaint U
herein on January 14, 1949; the defend#atgng appearecand U
U filed their answer to such complaint denying the substantive dlle-
U gations thereof; and the parties, by their attorneys, having
U severally consented to the entry of this Fidatgmentwithout O

trial or adjudication of any issues of fact taw herein and U
U without this Final Judgment constituting any evidence or adniis-
U sion by any party in respect of any such issues; g

Now, thereforebefore any testimony has been taken herein,
and without trial or adjudication of any issue of fact or |
0 herein, and upon the consent of all parties hereto, it is hereby 0
O Ordered, adjudged and decreed as follows:
0. [Sheman Act]
This Court has jurisdiction of the subject matter herein and
0 all the parties heretoThe complaint states a claim upon whic
[relief may be granted against eashthe defendantsunder Sec-
gtions 1, 2 and 3 of the Act of Congress of July1290, entitled
0 “An act to protect trade and commerce against unlavdsiraints
and monopolies,” commonly known as the Sherman Act,
[amended.

f

oogoo

a0 O

S

d

011, [Definitions] g
For the purposes of this Final Judgment: g

(@) “Western” shall mean the defendant Western Electrig

) Company, Incorporated. 0
| d
0 O

Other formats possible (specifyefore .TL) are: .MR
(“memo for record”), .MF (“memo for file”), .EG
(“engineer’'s notes”) andTR (Computing Science Tech.
Report).

Headings
.NH .SH
Introduction. Appendix |
.PP .PP
text text text text text text
1. Introduction Appendix |
text text text text text text

5

A Simpie List

AP 1.

J. Pencilpusher and X. Hardwired,
A

A New Kind of Set Screw,

R
Proc. IEEE
B75

(1976), 23-255.
1P 2.

H. Nails and R. Irons,

A

Fasteners for Printed Circuit Boards,
.R

Proc. ASME

.B 23

(1974), 23-24.

.LP (terminates list)

1. J. Pencilpusher and X. Hardwired, New Kind of
Set ScrewProc. IEEE7B5(1976), 23-255.

2. H. Nails and R. IronsFasteners for Printed Circuit
Boards,Proc. ASMEZ&3(1974), 23-24.

Displays
text text text text text text
.DS
and now

for something

completely different

.DE

text text text text text text

hoboken harrison newark roseville avenue greteet
eastorange brick church orange highland avenue moun-
tain station south orange maplewood millburn short hills
summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling millington
lyons basking ridge bernardsville far hills peapack glad-
stone

Options: .DS L: left-adjust; .DS C: line-by-line center;
.DS B: make block, then center.

Footnotes

Among the most important occupants

of the workbench are the long-nosed pliers.
Without these basic tools*

.FS

* As first shown by Tiger & Leopard

(1975).

.FE

few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants tbe workbench
are the long-nosedpliers. Without these basic tools* few
assembliezould be completedThey may lack the popu-
lar appeal of the sledgehammer

* As first shown by Tiger & Leopard (1975).

6

Multiple Indens

This is ordinary text to point out
the margins of the page.

AP 1.

First level item

.RS

AP a)

Second level.

.IP b)

Continued here with another second
level item, but somewhat longer.
.RE

AP 2.

Return to previous value of the
indenting at this point.

AP 3.

Another

line.

This is ordinary text to point out the margins of the page.
1. First level item
a) Secondevel.
b) Continuedherewith another second level item,
but somewhat longer.
2. Return to previous value of the indenting at this
point.
3. Anotherline.

Keeps

Lines bracketed by the following commands are kept
together, and will appear entirely on one page:

KS not moved .KF may float
.KE through text .KE in text
Douttdle Columm
TL
The Declaration of Independence
.2C
.PP

When in the course of human events, it becomes
necessary for one people to dissolve the political
bonds which have connected them with another, and
to assume among the powers of the earth the
separate and equal station to which the laws of
Nature and of Nature’s God entitle them, a decent
respect to the opinions of

The Declaration of Independence

When in the course of We hold these truths to
human events, it becomesbe self-evident, that all
necessaryor one people to men are created equal, that
dissolve the politicabonds they are endowed by their
which have connected creator with certain
them with another, and to unalienable rights, that
assume among thpowers among these are life, liber-
of the earth the separatety, and the pursuit ohap-
and equal station to which piness. That to secure
the laws of Nature and of these rights, governments
Nature’s God entitle them, are instituted amongnen,
a decent respect to the
opinions of mankind re-
quiresthat they should de-
clare the causes whidm-
pel them to the separation.

7

Equations

A displayed equation is marked

with an equation number at the right margin

by adding an argument to the EQ line:

.EQ (1.3)

X sup 2 over a sup 2 "="sqrt {p z sup 2 +qz+r}
.EN

A displayed equation is marked with an equation number
at the right margin by adding an argument to the EQ line:

2
gz_ = VpZFqz+r (1.3)

.EQ 1 (2.2a)

bold V bar sub nu™="left [pile {a above b above
c } right] + left [matrix { col { A(11) above .
above . } col { . above . above .} col {. above .
above A(33) }} right] cdot left [pile { alpha
above beta above gamma } right]

.EN
_ 0@y . . 0o
v,=0pbE0 . . . EEE 0 (2.2a)
e00 . . A@3)0LYO
EQ L

i: hat (chi) " mark =~ Odel V Osup 2
EN

EQ L

lineup =" {left ({partial V} over {partial x} right) }
sup 2 + { left ({partial V} over {partial y} right) }

sup 2 lambda -> inf
EN
F(x) = OOV [?
O, F Oy, 2
A P 5 CA s R
oox g goy O

$adot$, $b dotdot$, $ xitilde timesy vec$:

a, b, Exy.

See also the equations in the second table, panel 8.

(with delim $$ on, see panel 3).

Some Registers You Can Change

Line length Paragraph spacing

.nr LL 7i .nr PD 0
Title length Page offset

.nr LT 7i .nr PO 0.5i
Point size Page heading

.nr PS 9 .ds CH Appendix

: ; ter)
Vertical spacing (cen

nrvs 11 .ds RH 7-25-76

] (right)

Column width .ds LH Private

.nr CW 3i (left)
Intercolumn spacing Page footer

.nr GW .5i .ds CF Draft
Margins— head and foot AsLF iar

.nr HM .75i .ds RF

.nr FM .75i Page numbers
Paragraph indent nr% 3

.nr Pl 2n

8

Tables
TS (@ indicates a tab)
allbox;
Css CAT&T Common StockO
ccce DYear OPrice Dividend U
nnn. —197111-541$2.60
AT&T Common Stock = 21545 2.70
Year @ Price @ Dividend H—

3 46-55 2.87

1971®41-54©$2.60

oooooood

2®41-54®2.70 4 E40-535 3.24
3®46-55@2.87 5 L45-52U 3.40
4@40-53@3.24 6 F51-599 .95*

oo goop

5@45-52®3.40
6@51-59@ .95*
.TE

* (first quarter only)

(first quarter only)

The meanings of the key-letters describing the alignment
of each entry are:

c center n numerical
r right-adjust a subcolumn
| left-adjust s spanned

The global table optionsare center, expand, box,
doublebox, allbox, tab (x) andlinesize (m).

TS (with delim $$ on, see panel 3)
doublebox, center;
cc

Il
Name @ Definition

.sp
Gamma® $GAMMA (z) = int sub O sup inf \

t sup {z-1} e sup -t dt$
Sine@$sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error®$ roman erf (z) = 2 over sqrt pi \

int sub 0 sup z e sup {-t sup 2} dt$
Bessel®$ J sub 0 (z) = 1 over pi\

int sub 0 sup pi cos (z sin theta) d theta $
Zeta@$ zeta (s) =\

sum from k=1 to inf k sup -s (Re"s > 1)$
.TE

FIName Definition
amma I'(z):f0 tz e dt
Bine sin(<)=21_i(eix —e™)

: _2 (e
rror erf(z)—ﬁ o€ dt

10" .
Bessel Jo(z):ﬁj’0 cosgsing)d o

dZeta Z(s)=§k‘S (Res>1)
k=1

EEEEEEEEEHEEEER

Usage

Documents with just text:
troff -ms files
With equations only:
egn filesOtroff -ms
With tables only:
tbl files Otroff -ms
With both tables and equations:
tbl filesOeqnCitroff -ms

The above generatesARE output onGcos replace—st
with —ph for typesetter output.

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementati@sgftemfor typesettingmathemat-
ics. The language has been designed to be easy to learn and to peepls/(for example,
secretariesind mathematicatypists) who know neither mathematics nor typesettigperience
indicatesthat the languagecan be learnedin an hour or so, for it has few rules and fewer excep-
tions. For typical expressions, the size and font changes, positioning, line dramihthe like
necessaryo print according to mathematical conventions are all done automatidadly exam-

ple, the input

sum from i=0 to infinity x sub i = pi over 2

produces

mﬁ:”
5 2

i=0

The syntax of the language is specified by a small context-free grammar; a compiler-
compiler is usedto make a compiler that translates this language into typesetting commands.
Output may be produced on either a phototypesetter or tenranal with forward and reverse
half-line motions. The system interfaces directly with text formatting prograsasnixtures of

text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction

“Mathematics is known in the trade as
difficult, or penalty, copybecause it isslower, more
difficult, and more expensive to set in tyflen any
other kind of copy normally occurring in books and
journals.” [1]

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fontsAn
expression such as

lim (tanx)s" % =1
X -T2

requires an intimate mixture of roman, italand
greekletters,in three sizes, and a special character or
two. (“Requires” is perhaps the wrong word, but
mathematicshas its own typographical conventions
which are quite different from those of ordinary text.)
Typesetting such an expression by traditiomathods

is still an essentially manual operation.

A second difficulty is the two dimensional
characterof mathematics, which the superscript and

limits in the preceding example showed indisiplest
form. This is carried further by
by
b,
bs

aopt
a+
art

and still further by
O X
1_ log Vad™ Vb
02mvab Yad™+Vb

g
[= L tanh(S2em)
ae™-be Omvab v
t

1 cothy(V_aemx)
OmVab Vb
These examples also show line-drawing, built-up
characters like braces and radicals, arspectrumof
positioning problems.(Section 6 shows what aser
has to type to produce these on our system.)

2. Photocomposition

Photocomposition techniques can be used
solve someof the problems of typesetting mathemat-
ics. A phototypesetter is a devioghich exposesa
piece of photographic paper or film, placing charac-
ters wherever thegre wanted. The Graphic Systems
phototypesetter[2] orthe UNIX operating system[3]
works by shining light through a character stencil.
The characteris made the right size by lenses, and
the light beam directed by fibaptics to the desired
place on a piece gihotographicpaper. The exposed
paperis developedand typically used in some form
of photo-offset reproduction.

On UNIX, the phototypesetter is driven by a
formatting program calledrROFF [4]. TROFF was
designed for setting running textt also providesall
of the facilities that one needs for doing mathematics,
such as arbitrary horizontal and vertical motions,
line-drawing, size changing, but the syntax for
describing these special operationglif§icult to learn,
and difficult even for experienced usets type
correctly.

For this reason we decided to URROFF as an
“assembly language,” by designing languagefor
describingmathematicakxpressions, and compiling it
into TROFF.

3. Language Design

The fundamental principle upon whiclve
based our language design is ttie languageshould
be easy to use by people (fexample,secretaries)
who know neither mathematics nor typesetting.

This principle implies several thingsFirst,
“normal” mathematical conventions about operator
precedence, parentheses, and the like cannot be used,
for to give special meaning to such characters means
that the user has to understand what he orishg-
ing. Thus the language should not assume, for
instance,that parentheses are always balanced, for
they are not in the half-open intervah,lfp]. Nor
should it assume that thafla+b can be replaced by

(a+b)”*, or that 1-x) is better written aslf_x (or
vice versa).

Second, there should be relatively few rules,
keywords, special symbols and operators, dnel
like. This keeps the language easy to learn and
remember. Furthermore, there should be fewep-
tions to the rulesthat do exist: if something works in
one situation, it should work everywherdf a vari-
ablecanhave a subscript, then a subscript can have a
subscript, and so on without limit.

Third, *“standard” things should happen
automatically. Someone who types “x=y+z+1”
should get k=y+z+1"”. Subscripts and superscripts
should automatically be printed in appropriately
smaller size, with no special interventiorkraction

barshaveto be made the right length and positioned
at the right height.And so on. Indeeda mechanism
for overriding default actions has to exist, but its
application is the exception, not the rule.

We assumehat the typist has a reasonable pic-
ture (a two-dimensional representation) of the desired
final form, as might be handwritten by thathorof a
paper. We also assume that the input is typeda
computer terminal much like an ordinary typewriter.
This implies an input alphabet pkrhapsl00 charac-
ters, none of them special.

A secondary, but still important, goah our
design was that the system shobleleasyto imple-
ment, since neither of the authors had any desire to
make a long-term project of itSinceour designwas
not firm, it was also necessary thae program be
easy to change at any time.

To make the program easy to build atw
change, and to guarantee regularity (“it should work
everywhere”), the languageis defined by a context-
free grammar, described in Section Bhe compiler
for the language was built using a compiler-compiler.

A priori, the grammar/compiler-compiler
approach seemed the right thing to dOur subse-
quent experienceleads us to believe that any other
course would have bednlly. The original language
was designed in a few daySonstructionof a work-
ing system sufficient to try significanexamples
required perhaps a person-montlgince then, we
have spenta modest amount of additional time over
several years tuning, adding facilities, aoccasion-
ally changingthe language as users make criticisms
and suggestions.

We also decidedquite early that we would let
TROFF do our work for us whenevepossible.
TROFF is quite a powerful program, with a macro
facility, text and arithmetic variables, numericalm-
putation and testing, and conditioraanching. Thus
we have been able to avoid writing a lot of mundane
but tricky software. For example, we storeo text
strings, but simply pasthemon to TROFF Thuswe
avoid having to write a storage management package.
Furthermore,we have been able to isolate ourselves
from most details of the particular device and charac-
ter set currently iruse. For example,we let TROFF
compute thewidths of all strings of characters; we
need know nothing about them.

A third design goal is special to our environ-
ment. Since our program is only useful for typeset-
ting mathematics,it is necessary that it interface
cleanly with the underlying typesetting language for
the benefit of users who want to setermingled
mathematics and text (thesual case). The standard
mode of operation is that when a document is typed,
mathematicakxpressionare input as part of the text,
but marked by user settable delimiterShe program
readsthis input and treats as comments those things

which are not mathematics, simplgassing them
through untouched. At the same time it converts the
mathematical input intdhe necessaryTROFF com-
mands. The resulting ioutput is passed directly to
TROFF where the comments and the mathematical
parts both become text and/mROFF commands.

4. The Language

We will not try to describe the language pre-
cisely here;interested readers may refer to the appen-
dix for moredetails. Throughout this section, we will
write expressionsexactly as they are handed to the
typesetting program (hereinafter called'EQN"),
except that we won’'t show the delimitéhat the user
types to mark the beginning arehd of the expres-
sion. The interface betweerEQN and TROFF is
described at the end of this section.

As we said, typing x=y+z+Ishould produce
x=y+z+1, and indeed it doesVariables are made
italic, operators and digits become roman, and normal
spacings between letters and operators are altered
slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in
the input are used bEQN to separate pieces of the
input; they are not used to create spacéhe output.
Thus

X =y
+z+1
also givesx=y+z+1. Free-form input is easier to

type initially; subsequent editing is also easfer,an
expression may be typed as many short lines.

Extra white space can be forcedo the output
by several characters of various sizes.tilde “~”
gives a space equal to the normmdrd spacingin
text; a circumflex gives half this much, and a tab
charcter spaces to the next tab stop.

Spaces (or tildes, etc.plso serveto delimit
pieces of the inputFor example, to get

f (t)=2nf sin(t)dt
we write
f(t) = 2 pi int sin (omega t)dt

Here spaces amecessanyn the input to indicate that
sin, pi, int, and omegaare special, and potentially
worth special treatment.EQN looks up each such
string of characters in a table, and if appropraites

it a translation. In this casepi and omegabecome
their greek equivalentsnt becomes the integral sign
(which must be moved down and enlarged so it looks
“right”), and sin is made roman, following conven-
tional mathematical practiceParentheses, digits and
operators are automatically made roman wherever
found.

Fractions are specified with the keywarder:

a+b over c+d+e = 1

produces

a+b
- =
c+d+e

Similarly, subscriptsand superscripts are intro-
duced by the keywordsubandsup:

x2+y2222
is produced by
Xsup2+ysup2=zsup?2

The spaces after the 2's are necessary to markrtie

of the superscripts; similarly thieeyword sup has to

be marked off by spaces someequivalentdelimiter.

The return to the proper baseliilgeautomatic. Multi-

ple levels of subscripts or superscripts are of course
allowed: “x sup ysup z” is x¥. The construct
“something sub somethingsup something” is recog-
nized as a special case, so “x sub i sup 2"xfk
instead ofx; 2.

More complicated expressions can ndve
formed with these primitives:

2

62f_x2+y
axZ aZ b?

is produced by

{partial sup 2¥ over{partial x sup 2 =
X Sup 2 over asup 2 +y sup 2 over b sup 2

Braces{} are usedto group objects together; in this
case they indicate unambiguously what goes over
what on the left-hand side of the expressiohhe
language defines the precedencesap to be higher
than that ofover, so no braces are needed to get the
correct association on the right sideBraces can
always be used when in doubt about precedence.

The bracesconventionis an example of the
power of using a recursive grammar to define the
language. It is part of the language thdta construct
can appear in someontext, then any expressiorin
braces can also occur in that context.

There is asqrt operator for making square
roots of theappropriatesize: “sqrt a+b” produces
Ya+b, and

x = {-b + sqr{b sup 2-4ag} over 2a

-b+Vb%-4ac
2a

Since large radicals look poan our typesettersqrt
is not useful for tall expressions.

Limits on summations, integrals and similar
constructions are specified with theywords from
andto. To get

ZXi -0
i=0

we need only type
sum from i=0 to inf x sub +> 0

Centering and making the big enough and the limits
smaller are all automaticThe from andto parts are
both optional, and the central part (e.g., H)ecanin
fact be anything:

lim from {x —> pi /2} (tan™x) = inf

lim (tan x)=co

Jim (tan x)

Again, the braces indicate justhat goes into the
from part.

Thereis a facility for making braces, brackets,
parentheses, and vertical bars of the right height,
using the keywordgeft andright:

left [x+y over 2a right I™=1
makes

O,..0
oXt o=

02a g
A left need not have a correspondinght, as we
shall see in thenext example. Any charactersmay

follow left and right, but generally onlyvarious
parentheses and bars are meaningful.

1

Big brackets, etc., are often used with another
facility, called piles, which make vertical piles of
objects. For example, to get

51 if x>0
sign(x) = 00 if x=0

D—l if x<0

we can type

sign (x)"=="left {
rpile {1 above 0 abovel}
“Ipile {if above if above if
“lIpile {x>0 above x=0 above %%

The construction “left{” makes a left brace big
enough to enclose thepile {..}”, which is a right-
justified pile of “above ... above ..."“Ipile” makes

a left-justified pile. There are also centered piles.
Becauseof the recursive language definition, a pile
cancontain any number of elements; any element of a
pile can of course contain piles.

Although EQN makes a valiant attempt to use
the right sizes and fonts, there ammes when the
default assumptionsare simply not what is wanted.
For instance the italicsign in the previous example
would conventionally be imoman. Slides and tran-
sparencies often require larger characters than normal
text. Thus we also provide size arfdnt changing
commands: “size 12 bold {A™X"="y}" will produce
AX= Y. Sizeis followed by a numberepresent-
ing a character size ipoints. (One point is 1/72

inch; this paper is set in 9 point type.)

If necessaryan input string can be quoted in
"...", which turns off grammatical significance, and
any font or spacing changes that might otherviise
done on it. Thus we can say

lim™ roman"sup"“x sub n = 0

to ensure that the supremuioesn’tbecomea super-
script:

lim sup x,=0

Diacritical marks, long a problem in traditional
typesetting, are straightforward:

X+R+J+X+Y =257
is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilitiefor globally changing
default sizes and fonts, fexamplefor making view-
graphs or for setting chemical equationsThe
language allows for matrices, and for lining up equa-
tions at the same horizontal position.

Finally, there is a definition facilityso a user
can say

define namé..."

at any time in the document; henceforth, any
occurrenceof the token “name” in an expression will
be expanded into whatever was inside the double
quotes in its definition. This lets users tailor the
language to their own specifications, for it dsite
possible to redefine keywords lileeip or over. Sec-
tion 6 shows an example of definitions.

The EQN preprocessor reads intermixedxt
and equations, and passes its outputROFF. Since
TROFF uses lines beginning with a period as control
words (e.g., “.ce” means ‘“center the nexutput
line”), EQN usesthe sequence “.EQ” to mark the
beginning of an equation and “.ENtdb mark the end.
The “.EQ” and“.EN” are passed through tOROFF
untouchedso they can also be used by a knowledge-
able user to center equations, number them automati-
cally, etc. By default, however, “.EQ” and‘.EN”
are simply ignored byROFF, so by defaulequations
are printed in-line.

“.EQ” and “.EN” can be supplemented by

TROFF commands as desired; for example;eatered
display equation can be produced with the input:

.ce

.EQ
xsubi=ysubi..
.EN

Since it is tedious to typ8.EQ” and “.EN”
around very short expressions (single lettefi,

instance), the user can alslefine two charactersto
serve as the left and right delimiters of expressions.
Thesecharacters are recognized anywhere in subse-
quenttext. For example if the left and right delim-
iters have both been set to “#”, the input:

Let #x sub i#,#y# and#alpha#be positive
produces:

Letx,y anda be positive

Running a preprocessor is strikingly easy
UNIX. To typeset text stored in file ™ one issues
the command:

egn fOtroff

The vertical bar connects the output of gmecess
(EQN) to the input of anothgfTROFF)

5. Language Theory

The basic structure of the language is mot
particularly original one.Equations are pictured @s
set of “boxes,” pieced togethén variousways. For
example, something with a subscripfjust a box fol-
lowed by another box moved downward and shrunk
by an appropriateamount. A fraction is just a box
centeredaboveanother box, at the right altitude, with
a line of correct length drawn between them.

The grammar for the language is shown below.
For purposes of exposition, we have collapsethe
productions.In the original grammar, there are about
70 productions, but many dheseare simple ones
usedonly to guarantee that some keyword is recog-
nized early enough in the parsing proce§ymbols
in capital letters are terminal symbols; lower case
symbols are non-terminals, i.e., syntactic categories.
The vertical barJ indicates an alternative; tHarack-
ets [] indicateoptional material. A TEXT is a string
of non-blank characters or any string inside double
quotes; the other terminaymbols representliteral
occurrences of the corresponding keyword.

egn :box Oeqgn box

s text

O{ eqgn}

Obox OVER box

OSQRT box

Obox SUB box[1box SUP box

O L OCOR JPILE{ list }

OLEFT text eqn [RIGHT text]
Obox [FROM box] [TO box]
OSIZE text box

O[ROMAN OBOLD OITALIC] box
Obox [HAT OBAR ODOT ODOTDOT OTILDE]
ODEFINE text text

: egnUlist ABOVE egn
(TEXT

box

list

text

The grammamakesit obvious why there are
few exceptions. For example, the observation that
something can be replaced by a more complicated
something in braces is implicit in the productions:

egn :box Oegn box
box :textd{ eqn}

Anywherea single character could be useny legal
construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c?
Is it

{a over B over c
oris it

a over{b over ¢ ?

To answer questions like this, the gramnsar
supplemented with a small set of rules that describe
the precedence and associativity of operatdnspar-
ticular, we specify (more or less arbitrarily) thmater
associatedo the left, so the first alternative above is
the one chosenOn the other handsub and sup bind
to the right, because this is clos¢o standard
mathematical practice. That is, we assume?’ is
x@) not (x2)P.

The precedence rules resolve the ambigirity
a construction like

asup 2 overb
We definesupto have a higher precedence tk;wer,

2 =
so this construction is parsed gbs_ instead ofa®.

Naturally, a user can always foreeparticular
parsing by placing braces around expressions.

The ambiguous grammar approadgemsto be
quite useful. The grammame use is small enough to
be easily understood, for it contains none of the pro-
ductions that would be normally used for resolving
ambiguity. Instead the supplemental information
about precedence and associativity (als@ll enough
to be understood) provides the compiler-compivéh
the information it needs to make a fast, deterministic
parser for the specific language want. When the
language is supplemented by the disambiguating
rules, it is in factLR(1) and thus easy to parse[5].

The output code is generated as thput is
scanned. Any time a production of thgrammaris
recognized, (potentially) somEROFF commands are
output. For example, when thdexical analyzer
reportsthat it has found &EXT (i.e., a string of con-
tiguous characters), we havecognizedthe produc-
tion:

text TEXT

The translation of this isimple. We generatea local
name for the string, then hand the name &mel
string to TROFF, and let TROFF perform the storage
management.All we save is the name of the string,
its height, and its baseline.

As anotherexample, the translation associated
with the production

box : box OVER box

Width of output box =
slightly more than largest input width
Height of output box =
slightly more than sum of input heights
Base of output box =
slightly more than height of bottom input box
String describing output box =
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy string for bottom box);
move up; move left enough to center top box;
draw top box (i.e., copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally simple
semantic actions. Picturing the output as a set of
properly placed boxes makes the right sequesice
positioning commands quite obviousThe main
difficulty is in finding the right numbers tase for
esthetically pleasing positioning.

With a grammar, it isusually clear how to
extend the languageFor instance, one of oursers
suggested &ENSOR operator, to make constructions
like

m-ln—i
Grammatically, this is easyit is sufficientto add a
production like

box :TENSOR({ list}

Semantically, we need only juggle tthexesto the
right places.

6. Experience

There are really three aspects of interest—how
well EQN sets mathematics, how well it satisfies its
goal of being “easy to use,” and how easywas to
build.

The first question is easily addressedhis
entire paper has been set the program. Readers
can judge for themselves whether it is good enough
for their purposes.One of our users commented that
althoughthe outputis not as good as the best hand-
set material, it is still better than average, and much
better than the worst.In any case,who cares?
Printed books cannot compete with the birds and

flowers of illuminated manuscripts oresthetic
grounds, either, but they have sorlear economic
advantages.

Some of the deficiencies in the output could be
cleaned up with more work on our parEor exam-
ple, we sometimes leave tanuch spacebetweena
roman letter and an italic ondf we werewilling to
keep track of the fonts involved, we could do this
better more of the time.

Someother weaknesses are inherent in our out-
put device. It is hard, for instance, tdraw a line of
an arbitrary length without getting perceptibleover-
strike at one end.

As to ease of use, at the time of writing, the
system has been used by twlistinct groups. One
user population consists of mathematicians, chemists,
physicists, and computer scientistsTheir typical
reaction has been something like:

1)

It's easy to write, although | make the follow-
ing mistakes...

How do | do...?

It botches the following things.... Why don’t
you fix them?

@)
®)

(4)

You really need the following features...

The learning time is short.A few minutes
gives the generalflavor, and typing a page or two of
a paper generally uncovers most of the misconcep-
tions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who wereothe
ginal target of the systemTheytendto be enthusias-
tic converts. They find the language eady learn
(most are largely self-taught), and have little trouble
producing the output they wanfThey are of course
less critical of the esthetics of their outpgbain users
trained in mathematics.After a transition period,
most find using a computer more interesting than a
regular typewriter.

The main difficulty that users hagseemso be
remembering that a blank is a delimitexen experi-
enced users use blanks where they shouldn’t and omit
them when they are needed commoninstanceis

typing
f(x sub i)
which produces
f (%)
instead of
f(x)
Since theEQN language knows no mathematics, it

cannot deduce that the right parenthésisot part of
the subscript.

The language is somewhairolix, but this

doesn’t seem excessive considering how much is
being done, and it is certainly more comptiztn the
correspondingTROFF commands. Foexample,here
is the source for the continued fractiempressionin
Section 1 of this paper:

asub 0 + b sub 1 over
{asub 1+ b sub 2 over
{a sub 2 + b sub 3 over
{asub 3+ .}}}

This is the input for the large integral of Section 1;
notice the use of definitions:

define emx'{e sup mx"
define mald'{m sqrt ap"
define sd'{sqrt 8"
define sb'{sqrt B"
int dx over{a emx- be sup-mx} "=~
left { Ipile {
1 over{2 mal} “log”
{sa emx- sb} over{sa emx + sp
above
1 over mali’ tanh sup-1 (sa over sb emx)
above
-1 over mab’ coth sup-1 (sa over sb emx)

As to ease of construction, we haafready
mentionedthat there are really only a few person-
months invested. Much of this time has gone into
two things—fine-tuning (what is the most esthetically
pleasing space to use betwe#re numerator and
denominator of a fraction?)and changing things
found deficient by our users (shouldn’t a tilde &e
delimiter?).

The program consists of aumber of small,
essentially unconnected modules fade generation,
a simple lexical analyzer, a canned parser which we
did nothave to write, and some miscellany associated
with input files and the macro facilityThe program
is now about 1600 lineof C [6], a high-level
language reminiscerdf BCPL. About 20 percent of
these lines are “print” statements, generating dhé
put code.

The semantic routines that generate the actual
TROFF commands can be changed to accommodate
otherformatting languages and deviceBor example,
in lessthan 24 hours, one of us changed the entire
semantic package to drivélROFF, a variant of
TROFF, for typesetting mathematics on teletypewriter
devicescapable of reverse line motion§Since many
potential users do not have access typesetterbut
still have to type mathematics, this provideway to
get a typed version of the final output which is close
enoughfor debugging purposes, and sometimes even
for ultimate use.

7. Conclusions

We think we have shown thatig possibleto
do acceptably good typesetting of mathematinsa
phototypesetter, with an input language thatasyto
learn and use and that satisfies masgrs’demands.
Such a package can be implemented in short order,
given a compiler-compiler and a decent typesetting
program underneath.

Defining a language, anduilding a compiler
for it with a compiler-compiler seems likihe only
sensible way to do businesQur experiencavith the
use of a grammar and a compiler-compihars been
uniformly favorable. If we had written everything
into code directly, we would have bedocked into
our original design. Furthermore, we wouldhave
never been sure where the exceptions and special
caseswere. But because we have a grammaeg can
changeour minds readily and still be reasonably sure
that if a constructionworks in one place it will work
everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna, the
author of TROFF, for his willingness to modify
TROFFto make our task easier and fus continuous
assistance during the development of quogram.
We are also grateful to AV. Aho for help with
language theory, to S. C. Johnson for aid with the
compiler-compiler, and to our earlysersA. V. Aho,

S. I. Feldman, S. C. JohnsoR, W. Hamming, and
M. D. Mcllroy for their constructive criticisms.

References

[1] A Manual of Stylel2th Edition. University of
Chicago Press, 1969. p 295.

Model C/A/T Phototypesetter.Graphic Sys-
tems, Inc., Hudson, N. H.

Ritchie, D. M., and Thompson, K. L., “The
UNIX time-sharing system.”Comm. ACM 17,
7 (July 1974), 365-375.

Ossanna, J. F., TROFBser's Manual. Bell
Laboratories Computing Science Technical
Report 54, 1977.

Aho, A. V., and Johnson, S. C., “LR Pars-
ing.” Comp. Surv. 62 (June 1974), 99-124.
B. W. Kernighan and DM. Ritchie, The C

Programming Language. Prentice-Hall, Inc.,
1978.

(2]

(3]

[4]

[5]

(6]

Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user’'sguide for a system for typesetting mathematics, using the phototypesetters on the
UNIXT andGcosoperating systems.

Mathematical expressions are described in a language designed to be easy tpemgdwho
know neither mathematicsnor typesetting. Enough of the language to set in-line expressions like
lim (tan x)S" % =1 or display equations like
X -T2

Z< U

O S Z%
G(z) = e"©@ = exp0y O=[e
>1 O k=1
O 2,2 0o 2 2.4 0
S{z Sz S5z
=1+S,z+ 4+ O+ 75 4 + .- 0.
o ¥ 2 oo 2 222 0
O K K k O
= z O Sll SZZ C Sm'“ EFm
szEl KKy - .. K 20 1k1k1! 2k2k2! m "k ! 0
|j(1+2kz+ s HmK =m 0

can be learned in an hour or so.

The language interfaces directly with the phototypesetting languager, so mathematical
expressions can be embedded in the running text of a manuscrigheasmtire documentproducedin
oneprocess. This user’'s guide is an example of its output.

The same language may be used with ukex formatter NROFF to set mathematical expressions
on DASI andGsl terminals and Model 37 teletypes.

August 15, 1978

TUNIX is a Trademark of Bell Laboratories.

Typesetting Mathematics — User’s Guide

(Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

EQN is a program for typesetting
mathematics on the Graphics Systepisoto-
typesetters onuUNIX and Gcos The EQN
languagewas designedo be easy to use by peo-
ple who know neither mathematics nor typeset-
ting. Thus EQN knows relatively little about
mathematics. In particular, mathematicatym-
bols like +,—, x, parentheses, and sa haveno
special meaningsEQN is quite happy to set gar-
bage (but it will look good).

EQN works as a preprocessor for the
typesetter formatter,TROFH1], so the normal
mode of operation is to prepaaedocumentwith
both mathematics and ordinary temterspersed,
and let EQN set the mathematics whileROFF
does the body of the text.

On UNIX, EQN will also produce
mathematics ormAsI and GsI terminals and on
Model 37 teletypes.The input is identical, but
you have to use the programsQN and NROFF
instead of EQN and TROFE. Of course, some
things won't look as good because terminals
don't provide the variety of characters, sizes and
fonts that a typesetter does, hihie output is
usually adequate for proofreading.

TO USEEQN on UNIX,
egn filesOtroff

Gcosuse is discussed in section 26.

2. Displayed Equations

To tell EQN where a mathematical expres-
sion begins and ends, wmark it with lines
beginning .EQ and .EN. Thus if you type the
lines

EQ
X=y+z
.EN

your output will look like

X=y+z

The .EQ and .EN are copied through untouched;
they are not otherwise processed HfyN. This
meansthat you have to take care of things like
centering, numbering, and so on yourselthe
most common way is to use theTrROFF and
NROFF macro package package-ms’ developed
by M. E. Lesk[3], whichallows you to center,
indent, left-justify and number equations.

With the ‘-ms’ package, equationare
centered by defaultTo left-justify an equation,
use.EQ L instead of EQ. To indent it, USEEQ L.
Any of these can be followed by an arbitrary
‘equation number’ which will beplaced at the
right margin. For example, the input

.EQ 1 (3.1a)
x = f(y/2) + y/2
.EN

produces the output

x=f (y/2)+y/2 (3.1a)
Thereis also a shorthand notation so in-

line expressions likas® can be entered without

.EQ and.EN. We will talk about it in section 19.

3. Input spaces

Spacesand newlines within an expression
are thrown away byQN. (Normal text isleft
absolutely alone.)Thus betweereQ and .EN,

X=y+z
and

X=y+2z
and

X =Y

+z

and so on all produce the same output

X=y+zZ

2.

You should use spaces and newlines freely to
make your input equations readable aadyto
edit. In particular, very long lines are had
idea, since they are often hard to fix if you make
a mistake.

4. Output spaces

To force extra spaces into thmutput, use
a tilde “~” for each space you want;

X=y+7z
gives

X=y+z

You can also use a circumflex “*”, which gives
a space half the width of a tildelt is mainly
usefulfor fine-tuning. Tabs may also be used to
position pieces of an expression, but the tab
stops must be set lROFF commands.

5. Symboals, Special Names, Greek

EQN knows some mathematical symbols,
somemathematical names, and the Greek alpha-
bet. Forexample,

X=2 pi int sin (omega t)dt
produces
x=2m] sin(wt)dt

Here the spaces in the input aieeessary to tell
EQN thatint, pi, sinandomegaare separate enti-
ties that should get special treatmerithe sin,
digit 2, and parentheses are set in roman type
instead of italic;pi and omegaare made Greek;
andint becomes the integral sign.

When in doubt, leave spaces around
separate parts of the inputA very common
error is totype f(pi) without leaving spaces on
both sides of thei. As a result,eQN does not
recognizepi asa special word, and it appears as
f (pi) instead off ().

A complete listof EQN names appears in
section 23. Knowledgeable users can also use
TROFF four-character names for anythirepnN
doesn’t know aboutlike \(bs for the Bell Sys-
tem sign@.

6. Spaces, Again

The onlyway EQN can deduce that some
sequenceof letters might be special is if that
sequencds separated from the letters on either
side of it. This can be done by surrounding a
specialword by ordinary spaces (or tabs or new-

lines), as we did in the previous section.

You can also make special words stand
out by surrounding themwith tildes or
circumflexes:

X="27pi"int"sin"(Comega™t”) dt
is much the same as the last example, except
that the tildes not only separdtee magic words

like sin, omega,and so on, but also add extra
spaces, one space per tilde:

x =2 sin(wt)dt

Special words can also be separated by
braces{ } and double quotes...", which have
special meanings that we will see soon.

7. Subscripts and Superscripts
Subscripts and superscripts are obtained

with the wordssubandsup.

X sup 2 +y sub k
gives

X2+

EQN takescare of all the size changes and verti-
cal motions needed to make the output look
right. The words sub and sup must be sur-
rounded by spaces; sub2will give you xsuhb2
instead ofx,. Furthermoredon’t forget to leave
a space (or a tilde, etc.jo mark the end o&
subscript or superscriptA common error isto
say something like

y = (X sup 2)+1

which causes

y=(x?"

instead of the intended
y=(x?)+1
Subscripted subscripts and superscripted
superscripts also work:

X sub i sub 1

%,
A subscriptand superscript on the same thing
are printed one above the other if thebscript

comesfirst:

X sub i sup 2

Xi2
Other than this special cassyb and sup

group to the right, sx sup y sub meansx”,
not x¥,.

8. Braces for Grouping

Normally, the end of a subscript or super-
script is marked simply by a blank (or tab or
tilde, etc.) What if the subscript or superscript
is something that has to Igpedwith blanksin
it? In that case, you can use the bragemd}
to mark the beginning and erd the subscript
or superscript:

e sup{i omega}
ei wt

Rule: Bracescan always be used to forceeQN

to treat something as a unit, or just to make your

intent perfectly clear.Thus:

x sub{i sub I sup 2

with braces, but

x sub i sub 1 sup 2

X2
which is rather different.

Bracescan occur within braces if neces-
sary:

e sup{i pi sup{rho +3}

el Tlp+l

The general rule is that anywhere you could use

some single thing like, you can use an arbi-
trarily complicated thing if you enclose it in
braces. EQN will look after all the details of
positioning it and making it the right size.

In all casesmake sure you have the right
number of braceslLeavingone out or adding an
extra will causeeQN to complain bitterly.

Occasionally you will have to print braces.
To do this, enclose them in douldeotes,like
"{". Quoting is discussed in modetail in sec-

tion 14.

9. Fractions
To make a fraction, use the wooder:
a+b over 2c =1
gives
a+b _
2c

The line is made the right lengtnd positioned
automatically. Bracescanbe used to make clear
what goes over what:

{alpha + beth over{sin (x)}

o+
sin(x)
What happens when there is bothawer and a
sup in the same expression?in such an
apparently ambiguous caseQN does thesup
before theover, so
—-b sup 2 over pi
_b2 2
is Tinstead of-b™ The rules which decide

which operationis done first in cases like this
are summarized in sectid23. When in doubt,
however, use bracesto make clear what goes
with what.

10. Square Roots
To draw a square root, usqrt:
sqrt a+b + 1 over sgftax sup 2 +bx+g
is
1
Vaxttbxrc
Warning — square roots of tall quantities look

lousy, because a root-sign bémoughto cover
the quantity is too dark and heavy:

Va+b +

sqrt{a sup 2 over b sub} 2

v

b,

Big squareroots are generally better written as
something to the powest:

(a%b,)"

is

which is

(asup 2 /b sub 2) sup half

11. Summation, Integral, Etc.

Summations, integrals, and similar con-
structions are easy:

sum from i=0 to{i= inf} x sup i

produces
i =00 X
PR
i=0

Notice that we used braces to indicate where the
upper parti=co begins and ends.No braces
werenecessary for the lower partO, because it
contained no blanksThe braces will never hurt,
and if thefrom andto parts contain any blanks,
you must use braces around them.

The from and to parts are both optional,
but if both are used, they have to occur in that
order.

Other useful characters can replace the
sumin our example:

int prod wunion inter

become, respectively,

J] N 0O n

Since the thing before thfeom can be anything,
even something imraces,from-to can often be
used in unexpected ways:

lim from {n —> inf} x sub n =0
lim x,=0
n—oo

12. Size and Font Changes

By default, equations arsetin 10-point
type (the same size as this guide), with standard
mathematical conventions to determine what
characters are in roman and what in italic.
Although EQN makes a valiant attempt to use
esthetically pleasing sizes and fonts, it is not
perfect. To change sizes and fonts, us&e n
and roman, italic, boldand fat. Like sub and
sup, size and font changes affeatly the thing
that follows them, and revert to theormal
situation at the end of it. Thus

bold x y

Xy
and
size 14 bold x =y +
size 14{alpha + beth
gives

X=y+Q +B

As always, you can use brac#syou want to
affect something more complicated than a single
letter. For example, you can change the sife
an entire equation by

size 12{ ...}

Legal sizes which may follovgize are 6,
7, 8,9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28,
36. You can also change the siby a given
amount; for example, yowgan say size +2 to
make the size two points bigger, @ize-3 to
make it three points smaller.This has the
advantage that you don’t have to know wittet
current size is.

If you are using fonts other than roman,
italic and bold, you can sdpnt XwhereX is a
one characterrROFF hame or numberffor the
font. SinceEQN is tuned for roman, italic and
bold, other fonts may not give quite as good an
appearance.

The fat operation takes the current font
and widens ity overstriking: fat gradis O and
fat{x sub } is x.

If an entire document is to be in a non-
standard size or font, it is a severe nuisance to
have to write out a size and font change for each
equation. Accordingly, you can set a “global”
size or font which thereafter affects all equa-
tions. At the beginning of any equation, you
might say, for instance,

EQ
gsize 16
gfont R

.EN

to set the size to 16 and the fottt roman
thereafter. In place of R, you can use anytbg
TROFF font names. The size aftegsizecan be a
relative change with + or.

Generally, gsize and gfont will appear at
the beginning of a document but thegn also
appearthoughouta document: the global font
and size can be changed as ofismeeded. For

example, in a footnoteyou will typically want
the size of equations to match the size of the
footnote text, which is two points smaller than
the main text. Don't forget to reset the global
size at the end of the footnote.

13. Diacritical Marks

To getfunny marks on top of letters, there
are several words:

x dot

x dotdot
X hat

X tilde

X Vec

x dyad
X bar

X under

IX X X X Xt X X: X.

The diacritical mark is placed at the right height.
The bar andunderare made the rigHength for
the entire construct, as ik+y+z; other marks
are centered.

14. Quoted Text

Any input entirely within quotes (...") is
not subject to any of the font changes and spac-
ing adjustments normally done by tleguation
setter. This provides a way talo your own
spacing and adjusting if needed:

italic "sin(x)" + sin (x)

sin(x)+sin(x)

Quotes are also used to get braces and
othereEQN keywords printed:

"{ size alphg"
is
{ size alpha}
and
roman"{ size alphg"
is

{ size alphg

The construction™ is often used as a
place-holder whengrammatically EQN needs

fLike this one, in which we have &w random
expressions like; and@. The sizes for these were set
by the commandsize-2.

something, but you don’t actually want anything
in your output. For example, to makéHe, you
can't just typesup 2 roman Hebecause asup
has to be a superscriph something. Thugou
must say

sup 2 roman He

To get a literal quote use “\"". TROFF
characters like\(bs can appear unquoted, but
more complicated things like horizontal and
vertical motions with\h and\v should always be
quoted. (If you've never heard ofh and \v,
ignore this section.)

15. Lining Up Equations

Sometimes it's necessary to lingp a
series of equations at some horizontal position,
often at an equals signThis is donewith two
operations callednark andlineup.

The word mark may appear once at any
placein an equation.It remembers the horizon-
tal position where it appearedsuccessive equa-
tions can contain one occurrence of the word
lineup. The place wherdineup appears is made
to line up with the place marked Itye previous
mark if at all possible. Thus, for example,you
can say

EQ I

X+y mark = z
.EN

EQ I

X lineup = 1
.EN

to produce
X+y=z
x=1

For reasongoo complicated to talk about, when
you USEEQN and -ms’, use eithereQ 1 or .EQ L.
mark andlineup don’'t work with centered equa-
tions. Also bear in mindhat mark doesn’t look
ahead;

X mark =1

x+y lineup =z

isn't going to work, because theien’t room for
the x+y part after themarkremembers where the
X is.

16. Big Brackets, Etc.

To get big brackets]| braces { },
parenthese$), and bars] O around things, use
the left andright commands:

left { a over b + 1 righ}
"="left (¢ over d right)
+ left [e right]

is
0. 0O 0.0
02410= 08 5
Oob "o pdn

The resulting brackets are made big enough to
cover whatever they encloseOther characters
canbe used besides these, but the are not likely
to look very good. One exception is théoor
andceiling characters:

left floor x over y right floor
<= left ceiling a over b right ceiling

produces

O

al
oy

5l

b

ood

d
[
O

Several warnings about brackets are in
order. First, braces are typically bigger than
bracketsand parentheses, because they are made
up of three, five, seven, etc., pieces, while brack-
ets can be made up oo, three,etc. Second,
big left and right parentheses often look poor,
because the character set is poorly designed.

The right part may be omitted:a “left
something” need not have &orresponding
“right something”. If the right part is omitted,
put braces around the thing you wahe left
bracket to encompassOtherwise,the resulting
brackets may be too large.

If you want to omit thdeft part, things are
more complicated, because technically you can’t
have a right without a correspondingleft.
Instead you have to say

left " right)

for example. The left ™ means a “left noth-
ing”. This satisfies the rulesvithout hurting
your output.

17. Piles

Thereis a general facility for making vert-
ical piles of things; it comes in severfidvors.
For example:

A =" left
pile { a above b abovelc
™ pile { x above y above ¥

right]
will make
Lh xU
[t zO

The elements of the pile (thepan be as many

as you want) are centered one above another, at
the right height for most purposesThe key-
word aboveis used to separate the pieces; braces
are used around the entire listhe elements of

a pile can be as complicated as needed, even
containing more piles.

Three other forms ofpile exist: Ipile
makes a pile with the elements left-justified,;
rpile makes a right-justified pile; andpile
makes a centered pile, just likde. The verti-
cal spacing between the pieces is somewhat
larger forl-, r- andcpilesthan it is for ordinary
piles.

roman sign (x)'="

left {
Ipile {1 above 0 abovel}
™ Ipile
{if x>0 above if"’x=0 above if’x<p
makes
O
b if x>0
signk) = [0 if x=0
1 if x<0

Notice the left brace without a matching right
one.

18. Matrices
It is also possible to make matrices.or
example, to make a neat array like
X X2
i ¥
you have to type
matrix {

ccol{ x sub i above y sub}i
ccol{ x sup 2 above y supR

}

This produces a matrix with two centered
columns. The elements of the columns areen
listed just as for a pile, each element separated

by the wordabove. You can alsouse Icol or
rcol to left or right adjust columns. Each
columncanbe separately adjusted, and there can
be as many columns as you like.

The reasonfor using a matrix instead of
two adjacent piles, by the way, is thathk ele-
ments of the piles don't all have the same
height, they won't line up properlyA matrix
forcesthem to line up, because it looks at the
entire structure before deciding what spacing to
use.

A word of warning about matrices -each
column must have the same numbeelefments
in it. The world will end if you get this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is neces-
saryto follow mathematical conventions not just
in display equationsput also in the body of the
text, for example by making variable names like
X italic. Although this could be donéy sur-
rounding the appropriate parts wi#Q and .EN,
the continual repetition ofEQ and .EN is a nui-
sance. Furthermorewith ‘-ms’, .EQ and .EN
imply a displayed equation.

EQN provides a shorthand fahortin-line
expressions. You can define two characters to
mark the left and right ends @i in-line equa-
tion, and then type expressions right in thig-
dle of text lines. To set both the left and right
characters to dollar signs, for example, add to
the beginning of your document the three lines

EQ
delim $$
.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary
variable, and let $beta$ be zeroThen
we can show that $x sub 1$ is $>=0%.

This works as you might expeet spacesnew-
lines, and so on are significamt the text, but
not in the equation part itselfMultiple equa-
tions can occur in a single input line.

Enough room is left before and after a line
that contains in-line expressions that something
n
like > x doesnot interfere with the lines sur-
i=1
rounding it.
To turn off the delimiters,

EQ

delim off

.EN
Warning: don't use braces, tildes, circumflexes,
or double quotes as delimiters — chaos will
result.
20. Definitions

EQN provides a facility so you can give
frequently-used string of characters a name, and
thereafter just type the name insteafl the
whole string. For example, if the sequence

xsubisubl+ysubisubl

appearsrepeatedlythroughout a paper, you can
save re-typing it each time by defining like
this:

define xy 'xsubisubl1l+ysubisubl

This makesxy a shorthand for whatever charac-

ters occur between the single quotes in the
definition. You can use any character instead of
guoteto mark the ends of the definition, so long

as it doesn'’t appear inside the definition.

Now you can usey like this:

EQ
f(x) = xy ...
.EN

and soon. Each occurrence ofy will expand
into what it wasdefinedas. Be carefulto leave
spacer their equivalent around the name when
you actually use itso EQN will be able to iden-
tify it as special.

There are several things to watch out for.
First, although definitions can usprevious
definitions, as in

.EQ

define xi ' x sub i’
define xil' xi sub 1’
.EN

don't define something in terms dkelf A
favorite error is to say

define X ' roman X'

This is a guaranteed disastaince X is now
defined in terms of itselflf you say

define X' roman"X" '

however, the quotes protect the second X, and
everything works fine.

EQN keywords can be redefinedrou can
make / mearover by saying

define /' over’
or redefineover as / with

define over' /'

If you need different things tprint on a
terminal and on the typesetter, it is sometimes
worth defininga symbol differently ilNeQN and
EQN. This can be done withdefineandtdefine.
A definition made withndefineonly takes effect
if you are runningNEQN; if you usetdefine,the
definition only applies foEQN. Namesdefined
with plain defineapply to bothEQN and NEQN.

21. Local Motions

Although EQN tries to get most things at
the right place on the paper,isin’t perfect,and
occasionallyyou will need to tune the output to
makeit just right. Small extra horizontal spaces
can be obtained with tildand circumflex. You
can also saypack nand fwd nto move small
amounts horizontally.n is how far to move in
1/100’s of an em (an em @&boutthe width of
the letter'm’.) Thusback 50moves back about
half the width of an m.Similarly you can move
things up ordown with up nand down n. As
with sub or sup, the local motions affect the
next thing in the input, and this can beme-
thing arbitrarily complicated if iis enclosedin
braces.

22. A Large Example

Here is the complete source for the three
display equations in the abstract of this guide.

EQI

G(zymark ="e sup{ In " G(z) }

"="exp left (

sum from k>=1{S sub k z supJ}kover k right)
“=" prod from k>=1e sup{S sub k z sup k k
.EN

EQI

lineup =left (1+Ssub1lz+

{ S sub 1 sup 2 z sup}2over 2! + ... right)

left (1+{ S sub 2 z sup 2 over 2

+{ S sub 2 sup 2 z sup}over{ 2 sup 2 cdot 2}
+ ...right) ...

.EN

EQ I

lineup = sum from m>=0 left (

sum from

pile{ ksub 1 ksub2,.., k sub m=0

above

k sub 1 +2k sub 2 + ... +mk sub m Em

{ S sub 1 sugk sub 3 } over{1 sup k sub 1 k sub 1}!~

{ S sub 2 sugk sub 2 } over{2 sup k sub 2 k sub 2}!”

{ S sub m sugk sub n} } over{m sup k sub m k sub m}!
right) z sup m
.EN

23. Keywords, Precedences, Etc.

If you don't use bracesgQnN will do
operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

These operations group to the left;
over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation
marks, and these mathematical words are con-
verted to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

These charactersequences are recognized and
translated as shown.

>= >
<= <
I= Z
+- +
-> —
<- -
<< <
>> >
inf 00
partial 0
half 2
prime !
approx =
nothing

cdot

times X
del O
grad a
sum >
int |
prod M

union []
inter N

To obtain Greek lettersimply spell them
out in whatever case you want:

DELTA A iota l
GAMMA T kappa K
LAMBDA A lambda A
OMEGA Q mu M
PHI) nu \Y
Pl n omega ()
PSI Y omicron 0
SIGMA Z phi [0)
THETA O pi s
UPSILON Y psi P
XI = rho p
alpha a sigma o
beta B tau T
chi X theta 0
delta 0 upsilon v
epsilon € Xi i3
eta n Zeta 4
gamma Yy

These are all the words known t@QN
(except for characters with names), together with
the section where they are discussed.

above 1718 Ipile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vec 13
italic 12 . 4,6
Icol 18 {} 8
left 16 8,14
lineup 15

24. Troubleshooting

If you make a mistake in an equation, like
leaving out a brace (very common) or having
one too many (very common) or having sap
with nothing before itfcommon),EQN will tell
you with the message

syntax error between lines x and v, file z

where x and y are approximately the lines
betweenwhich the trouble occurred, aris the
nameof the file in question.The line numbers
are approximate — look nearby as wellhere
are also self-explanatory messages that arise if
you leave out a quote or try to rEQN on a
non-existent file.

If you want to check a document before
actually printing it (onuNix only),

egn files>/dev/null

will throw away the output but print the mes-
sages.

If you use something like dollar signs as
delimiters, it is easy to leave one oufhis
causes very strangdroubles. The program
checkeg(on ccos use./checkednstead) checks
for misplaced or missing dollar signs asichilar
troubles.

In-line equations can only be so big
because of an internal buffer iROFF. If you
get a message “word overflow”, youhave
exceededhis limit. If you print the equation as
a displayed equation this message will usually
go away. The message “line overflow” indi-
cates you have exceeded ewenbigger buffer.
The only cure for this ido breakthe equation
into two separate ones.

On a related topiceQN does not break
equations by itself — yomust split long equa-
tions up across multiple lines by yourself, mark-
ing each by a separaiEyEN sequence.EQN
doeswarn about equations that are too long to
fit on one line.

25. Use on UNIX

To print a document that
mathematics on thenix typesetter,

contains

egn filesOtroff

If there are anyrROFF options, they go after the
TROFF part of the command. For example,

egn filesOtroff -ms

To run the same document on thecos

-10 -

typesetter, use

egn filesOtroff —g (other options)Jgcat

A compatible version oEQN can be used
on devices like teletypes amds| and GsI termi-
nals which have half-line forward and reverse
capabilities. To print equations on a Model 37
teletype, for example, use

neqn filesO nroff

The language for equations recognizBdNEQN
is identical to that ofeQN, although of course
the output is more restricted.

To use aGsl or DASI terminal as the out-
put device,

neqn filesCnroff —Tx

wherex is the terminal type you are using, such
as 300 or 300S.

EQN and NEQN can be used with thesL
program[2] for setting tables that contain
mathematics. UseBL before[NJEQN, like this:

tbl files O eqn O troff
tbl files O neqn O nroff

26. Acknowledgments

We are deeply indebted th F. Ossanna,
the author of TROFF, for his willingness to
extend TROFF to make our task easieand for
his continuous assistance during tHevelop-
ment and evolution oEQN. We are also grate-
ful to A. V. Aho for adviceon languagedesign,
to S. C. Johnson for assistance with thecc
compiler-compiler, and to athe EQN users who
have made helpful suggestions and criticisms.

References

[1] J. F. Ossanna, NROFF/TROFF User’s
Manual”, Bell Laboratories Computing
Science Technical Repatb4, 1976.

[2] M. E. Lesk, “Typing Documents on
UNIX”, Bell Laboratories, 1976.

[8] M. E. Lesk, “tBL — A Program for Set-
ting Tables”, Bell LaboratoriesComput-
ing Science Technical Repgt49, 1976.

Thl — A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Thl is a document formatting preprocessor fiaff or nroff which makes even
fairly complextables easy to specify and entdt.is available on thepr-11 UNIX* sys-
tem and on Honeywell 6006cos. Tables are made up of columns which may be
independentlycentered, right-adjusted, left-adjusted, or aligned by decimal points.
Headings may be placed over single columns or groups of colufatable entry may
contain equations, or may consist of several rows of teixirizontal or vertical lines
may be drawn as desired in the table, and any table or element may be enclosed in a
box. Forexample:

O 1970 Federal Budget Transfers O
J (in billions of dollars) S
0 0 Taxes 0 Money [
5 Stae Ocollected U spent O Net g
New York 2291 21.35 —1.56
ewldersey 0 833 [6.96 O —1.378
(Connecticut 0 4.12 0 3.10 0-1.02
[Maine U o074 O o067 U-0.070
California g 2229 52242 0+0.130
CNew Mexico o 070 149 +O.79%
eorgia O 330 g 4.28 D+O.98D
Mississippi O 1.15 0O 2.32 0+1.17
FTexas H 933 H11.13 H+1.80[

January 16, 1979

* UNIX is a Trademark/Service Mark of the Bell System

Thl — A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

I ntroduction.

Thl turnsa simple description of a table intotraff or nroff [1] program (list of commands) that
prints the table.Tbl may be used on theppP11 uNix [2] system and on the Honeywell 608B0S sys-
tem. It attempts to isolate a portion of a job that it can successfully handle and leave the remainder for
other programs.Thustbl may be used with the equation formattimgpgrameqn[3] or various layout
macro packages [4,5,6], but does not duplicate their functions.

This memorandum is divided into two partBirst we give the rules for preparitgl input; then
someexamplesare shown. The descriptionof rules is precise but technical, and the beginning user may
prefer to read the examples first, as they show smmenontable arrangements.A sectionexplaining
how to invoketbl precedes the example3.o avoid repetition, henceforth re&ff as“troff or nroff.”

The input totbl is text for a document, with tables preceded by.&S" (table start) command
and followed by a “TE” (table end) command.Tbl processes the tables, generatirgff formatting
commands, and leaves the remainder oftéxt unchanged.The “ .TS” and “.TE” lines are copied,
too, so thatroff page layout macros (such as the memo formatting macrpscyd] use these lines to
delimit and place tables as they see fit. particular, any arguments on theTS” or “ .TE” lines are
copied but otherwise ignored, and may be used by document layout macro commands.

The format of the input is as follows:

text
TS
table
.TE
text
TS
table
.TE
text

where the format of each table is as follows:

.TS
options;
format .
data
.TE

Each table is independent, and must contain formatting information followdtklbiatato be enteredin
the table. The formatting information, which describes the individual columns and rovilsedfble,
may be preceded by a few options that affecteiire table. A detaileddescriptionof tablesis given
in the next section.

Input commands.

As indicated above, a table contains, first, global options, then a format section describing the lay-

out of the table entries, and then the data to be priniéd format and dataare alwaysrequired,but
not the options. The various parts of the table are entered as follows:

1)

2)

OpTIONS. There may be a single line of options affecting the whalde. If present,this line
must follow the.TS line immediately and must contain a list of option names separated by
spaces, tabs, or commas, and must be terminated by a semitbierallowable options are:

center — center the table (default is left-adjust);

expand — make the table as wide as the current line length;
box — enclose the table in a box;

allbox — enclose each item in the table in a box;
doublebox — enclose the table in two boxes;

tab (x) — usex instead of tab to separate data items.
linesize (n) — set lines or rules (e.g. frobox) in n point type;
ddim (xy) — recognizex andy as theegndelimiters.

Thetbl program tries to keep boxed tables on one page by issuing appropriate “naeyl't¢¢m-
mands. These requests are calculated from the number of lines in the tables tear@ drespac-
ing commands embedded in the input, these requests may be inaccurate; usetrofirimad-
cedures, such as keep-release macros, in that ddseuserwho must have a multi-pageboxed
table should use macros designed for this purpose, as explained below under ‘Usage.’

FORMAT. The format section of the table specifies the layout of the colugash line inthis
sectioncorresponds t@ne line of the table (except that the last line corresponds to all following
lines up to the nextT&, if any— seebelow),and each line contains a key-letter for each column

of the table. It is good practice to separate the key letters for each column by spaces or tabs.
Each key-letter is one of the following:

L or I to indicate a left-adjusted column entry;
Rorr toindicate a right-adjusted column entry;
Corc toindicate a centered column entry;

Norn to indicate a numerical column entry, to be aligned with other numesitaks so
that the units digits of numbers line up;

A ora to indicate an alphabetic subcolumn; all corresponding erdrialignedon the left,
and positioned so that the widest is centered within the column (see example on page
12);

Sor s toindicate a spanned heading, i.e. to indith#d the entry from the previouscolumn
continues across this column (not allowed for the first column, obviously); or

~ to indicatea vertically spannecheading,i.e. to indicate that the entry from the previ-
ousrow continuesdown throughthis row. (Not allowed for the first row of the table,
obviously).

When numericalalignmentis specified, a location for the decimal point is soughte rightmost

dot (.) adjacent to a digit is used as a decimal pointhefeis no dot adjoininga digit, the right-
mostdigit is usedasa units digit; if no alignment is indicated, the item is centered in the column.
However,the specialnon-printingcharacteistring \& may be used to override unconditionally dots
and digits, or to align alphabetic data; this string lines up where aadotally would, and then
disappearsrom the final output. In the example below, the items shown at the left will be
aligned (in a numerical column) as shown on the right:

13 13

4.2 4.2
26.4.12 26.4.12
abc abc
abd& abc
43\&3.22 43322
749.12 74912

Note: If numericaldataare used in the same column with wideror r type table entries, the
widestnumberis centered relative to the wideror r items (is used instead dffor readability;
they havethe same meaning as key-lettershlignment within the numerical items is preserved.
This is similar to the behavior i type data, as explained abovélowever, alphabeticsub-
columns (requested by tteekey-letter) are always slightly indented relativelLtdtems; if neces-
sary, the column width is increased to force thiis is not true fon type entries.

Warning: then anda items should not be used in the same column.

For readability,the key-letters describing each column should be separated by spevesnd of
the format section is indicated by a perio@lhe layoutof the key-lettersin the format section
resembles the layout of the actual data in the tableus a simple format might appear as:

cCss

Il nn.
which specifies a table of three columns. The first line of the tabitainsa headingcentered
across all three columns; each remaining line contains a left-adjusted item in the first column fol-
lowed by two columns of numerical dat& sample table in this format might be:

Overall title
ltem-a 3422 9.1
ltem-b 12.65 .02
ltems: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines— A key-letter may be replaced by ‘(underscore) to indicata horizontalline
in placeof the corresponding column entry, or by ‘=’ to indicate a double horizontal life.
an adjacent column contains a horizontal line, or if therevartical lines adjoining this
column, this horizontal line is extended to meet the nearby lindsany data entry is pro-
vided for this column, it is ignored and a warning message is printed.

Vertical lines— A vertical bar may be placed between column key-letteéfhis will cause a
vertical line between the corresponding columngheftable. A vertical bar to the left of
the first key-letter or to the right of the last one produces a line at the edge of thelftable.
two vertical bars appear between key-letters, a double vertical line is drawn.

Space between columas A number may follow the key-letterThis indicatesthe amountof
separation between this column and the next coluffine number normallyspecifiesthe
separation irens(one en is aboutthe width of the letter ‘n’).* If the “expand” option is
used,then thesenumbers are multiplied by a constant such that the table is as wide as the
current line length. The default column separation number is B. the separation is
changed the worst case (largest space requested) governs.

Vertical spanning— Normally, vertically spanned items extending over several rows of the table
are centered in their vertical rangH. a key-letteris followed byt or T, any corresponding
vertically spanned item will begin at the top line of its range.

* More precisely, an en is a number of points (1 point = 1/72 inch) equal to half the current type size.

3)

-4 -

Font changes— A key-letter may be followed by a string containing a font nam@umber
preceded by the lettdror F. This indicates that the corresponding column should be in a
different font from the default font (usually Romarll font namesare one or two letters;

a one-letter font name should be separated from whatellews by a space ortab. The
single lettersB, b, I, andi are shorter synonyms fdB andfl. Font change commands
given with the table entries override these specifications.

Point size changes- A key-lettermay be followed by the lettgy or P and a number to indi-
catethe point size of the correspondingable entries. The number may be a signed digit, in
which case it is taken as an increment or decrement fih@urrentpoint size. If both a
point size and a column separation value are given, one or more blanks must separate them.

Vertical spacing changes- A key-letter may be followed by the letteror V and a number to
indicate the vertical line spacing to be used within a multi-line corresponalirig entry.
The numbermay be a signeddigit, in which case it is taken as an increment or decrement
from the current vertical spacingd column separation value must be separated by blanks
or some other specification from a vertical spacing requésis request has no effect
unless the corresponding table entry is a text block (see below).

Column width indication— A key-letter may be followed by the letter or W and a width
value in parentheses.This width is used as a minimum column widtH. the largestele-
ment in the column is not as wide as the width value given aftew thiee largest element
is assumedo be thatwide. If the largestelementin the column is wider than the specified
value, its width is used. The width is also used as a default line length for included text
blocks. Normaltroff units can be used to scale the width value; if none are used, the
default is ens.If the width specification is a unitless integer the parentheses may be omit-
ted. If the width value is changed in a column, thst one given controls.

Equal width columns— A key-letter may be followed by the letteror E to indicate equal
width columns. All columns whose key-letters are followed &yr E are made the same
width. This permits the user to get a group of regularly spaced columns.

Note: The order of the above features is immaterial; they need nateparatechby spaces,
except as indicated above to avoid ambiguities involving pointasidéont changes. Thus
a numerical column entry in italic font and 12 point type with a minimum width of 2.5
inches and separated by 6 ens from the next column could be specified as
npl2w(25)fI 6

Alternative notation— Insteadof listing the format of successive lines of a table on consecutive
lines of the format section, successive line formats may be given on the same line, separated
by commas, so that the format for the example above might have been written:

css,Inn.

Default— Column descriptors missing from the end of a format line are assumed_to bee
longest line in the format section, however, defines the number of columns tabthg
extra columns in the data are ignored silently.

DATA. The data for the table are typed after the fornidbrmally, eachtableline is typedasone
line of data. Very long input lines can be broken: any line whizst characteiis \ is combined
with the following line (and thé& vanishes). The datafor different columns(the tableentries)are
separatedy tabs, orby whatever character has been specified in the opdios option. There
are a few special cases:

Troff commands within tables- An input line beginning with a.* followed by anything but a
number is assumed to be a commandrdaéf and is passed through unchanged, retaining its
position in the table.So, for example, space within a table may be produced lsp™
commands in the data.

-5-

Full width horizontal lines— An input line containing only the character (underscore) o
(equalsign) is taken tobe a single or double line, respectively, extending the full width of
the table.

Single column horizontal lines- An input tableentry containing only thecharacter or = is
taken to be a single or double line extending the full width ofctiiemn. Such lines are
extended to meet horizontal or vertical lines adjoining ¢tbismn. To obtain these charac-
ters explicitly in a column, either precede them\&yor follow them by a spacebeforethe
usual tab or newline.

Short horizontal lines— An input tableentry containing only the strin§ is taken to be a sin-
gle line as wide as the contents of the colurttnis not extended to meet adjoining lines.

Repeated characters- An input tableentry containing only a string of the fordRx wherex is
any character is replaced by repetitionghafcharacterx as wide as the data in the column.
The sequence of’s is not extended to meet adjoining columns.

Vertically spanned items- An input table entry containing only the character stkmmdicates
that the table entry immediately above spans downward over this ltow.equivalentto a

table format key-letter of ‘.

Text blocks— In order to include a block of text adable entry, precedet by T{ and follow it

by T}. Thus the sequence

R B

block of

text

T ...
is the way to enter,as a single entry in the table, something that cannot conveniently be
typed as a simple string between talidote that theTF end delimiter must begin a line;
additional columns of data may follow after a tab the sameline. Seethe exampleon
page 10 for an illustration of included text blocks in a talifemore than twentyor thirty
text blocks are used in a table, various limits inttiof program are likely to be exceeded,
producing diagnostics such as ‘too many string/macro names’ omitty numberregis-
ters.’

Text blocks are pulled out from the table, processed separatehtrbff, and replaced in the
table as a solid blocklf no line length is specified in tHalock of texttself, or in the table
format, the default is to udexC/AN+1) whereL is the current line lengthC is the number

of table columns spanned by the text, ahds the total number of columns in the table.
The other parameters (point size, font, etsgdin setting theblock of textare those in
effect at the beginningof the table (including the effect of the.TS” macro) and any table
format specifications of size, spacing dodt, usingthe p, v andf modifiers to the column
key-letters. Commandswithin the text block itself are also recognized, of courstowever,
troff commands within the table data but not within the text block do not affect that block.

Warnings: — Although any number of lines may be present in a table, only the2@iéstines
are used in calculating the widths of tharious columns. A multi-pagetable, of course,
may be arranged as several single-page tables if this proves topbeblam. Other
difficulties with formatting may arise because, in the calculation of column widths all table
entries are assumed to be in the font and size being used whenTi®é ¢ommandwas
encountered, except for font and size changes indicated (a) in the table format section and
(b) within the table data (as in the entig+3\fldatafP\s0). Therefore, although arbitrary
troff requestamay be sprinkled in a table, care must be taken to avoid confusing the width
calculations; use requests such gss* with care.

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many similar lines,
as with sub-headings @ummarizationsthe “ .T&” (table continue) command can be used to
changecolumnparameters.The outline of such a table input is:

TS
options;
format .
data
T&
format .
data
T&
format .

data
.TE

as inthe examples on pages 10 and 1dsing this procedure, each table line can be close to its
corresponding format line.

Warning: it is not possible to change the number of columns, the space between columns, the
global options such aox, or the selection of columns to be made equal width.

Usage.
OnuNIx, tbl can be run on a simple table with the command

tbl input-file Otroff

but for more complicated use, where there are several input files, and they contain equatioms and
memorandum layout commands as well as tables, the normal command would be

tbl file-1 file-2 . . . OegnOtroff —ms

and, of course, the usual options mayusedon the troff and eqn commands. The usage fonroff is
similar to that fortroff, but only TELETYPEL] Model 37 and Diablo-mechanismpASI or GSI) terminals
can print boxed tables directly.

For the convenience of users employing line printers without adequate driving tables or post-
filters, there is a speciatTX command line optiorto thl which produces output that does not have
fractional line motionsin it. The only other command line options recognizedtlly are —ms and
—mm which are turnedinto commandsto fetch the corresponding macro files; usually it is more con-
venient to place these arguments onttiof part of the command line, but they are acceptedbbyas
well.

Note that wheregnandtbl are used together on the same tlileshould be used firstlf thereare
no equations within tables, either order works, but it is usually faster tthlréinst, sinceegnnormally
producesa larger expansion of the input thtbl. However, if there are equations within tables (using
the delim mechanism ireqn), tbl must be first or the outputill be scrambled. Usersmustalsobeware
of using equations im-style columns; this is nearly always wrong, sitickattempts to split numerical
format items into two parts and this is not possible with equatidihg user can defend against this by
giving the delim(xx) table option; this prevents splitting of numerical columns withinddlemiters. For
example, if theegn delimiters are$$, giving delim($$) a numerical column such as “1245 $+- 16$”
will be divided after 1245, not after 16.

Thl limits tablesto twenty columns; however,use of more than 16 numerical columns may fail
because of limits irtroff, producing the ‘too many number registers’ messageaff number registers
used bytbl mustbe avoidedby the user within tables; these include two-digit names from 31 to 99, and
names of the formgx, x+, x 0 ~x, andx—, wherex is any lower case letterThe names#, #-, and#”
are also used in certain circumstanc@®. conserve number registeamesthe n anda formats share a
register; hence the restriction above that they may not be used in the same column.

For aid in writing layout macrogbl defines a number register TW which is the table width; it is
defined by the time that the.TE” macrois invoked and may be used in the expansion of that macro.
More importantly, to assist in laying out multi-page boxahlesthe macroT# is definedto producethe

-7-

bottom lines and side lines of a boxed table, and iweoked at its end. By useof this macroin the
page footer a multi-page table can be box&dparticular, thems macroscanbe used to print a multi-
page boxed table with a repeated heading by givingathementH to the “ .TS” macro. If the table
start macro is written

TS H
a line of the form

.TH
must be given in the table after any table heading (or at the start if nigla¢grial up tothe “ .TH” is
placed at the top of each page of table; the remaining lines in the table are plameraipagesas
required. Note that this iswot a feature otbl, but of themslayout macros.

Examples.

Hereare some examples illustrating featurestdf The symbol@® in the input represents a tab
character.

Input: Output:

TS LLanguage Authors Runson g
box; O O
ccc ortran Many Almost anything E
1. L1 IBM 360/370 0
Languagép Authors® Runs on c BTL 11/45,H6000,3707

[BLISS Carnegie-Mellon PDP-10,11 O
Fortran® Many® Almost anything Ups Honeywell H6000 g
PL/1®1BM @ 360/370 abascal Stanford 370 E

C®BTL®11/45,H6000,370
BLISS® Carnegie-Melloo PDP-10,11

IDS@ Honeywell®H6000
Pascalp StanfordD 370
.TE

I nput: Output:
TS 0 AT&T Common Stock [
allbox; =Year O Price ODividend S
Con (1971 14154 $2.60 [
nnn U 2 g4154 g 270 E
AT&T Common Stock g 3 546-555 287 .
Year® Price® Dividend U 4 [4053 7 324 O
19710 41-549$2.60 D5 045520 340 -
2041-5402.70 H 6 05159 0 .95 A
3@46-5502.87 .
40 40-53D3.24 (first quarter only)
5@®45-5203.40
6®51-59D .95*%
.TE

* (first quarter only)

-8-

Input: Output:

TS 0 Major New York Bridges U

box; = Bridge O Designer [OLength H

EEEDC [Brooklyn =5) A._ Roebling H 1595 [

L0l On. El\/lz_mhattan] Glindenthal [1470 E

Major New York Bridges —Williamsburg oL L.Buck [1600 -

- rQueensborough E Palmér E 1182

Bridge® Designef® Length 0 o Hornbostel O
U 0O 0 1380 E

Brooklyn@®J. A. RoeblingD 1595 ElTriborough 0O. H. Ammann 85—

Manhattarid G. Lindenthal® 1470 0 . 0 383

Williamsburg®L. L. Buck® 1600 [Bronx Whitestone EO. H. Ammann E 2300 O

3 OrhrogsNeck 0O. H. Ammann [1800 g

Queenshorough Palmer &0 1182 GeorgeWashington HO. H. Ammann [H 3500

@ Hornbostel

® ®1380

Triborough® 0. H. Ammanr® _

® ®383

Bronx Whiteston@®O. H. Ammann® 2300

Throgs NecknO. H. Ammann® 1800

George Washingtom O. H. Ammann® 3500

.TE

Input: Output:

TS Stack

cc 1 O46 O

np-20n 0. , Op3 U

@ Stack =210

® 3 015 g

1046 4 E,_D&E’D

©) 5 0 21 O

2023

@_

3@15

@_

4®6.5

@_

5@2.1

G)

TE

-9-

Input: Output:
TS B:nuary february march O
box; pril may o E
LLL une july Months
0
LL_ raugust septembeLD
LLOLB Fpctober november decemberf
LL_
LLL.
january® february® march
april®@ may
june®@july @ Months
augusto september
octobefD novembef® december
.TE
Input: Output:
TS O Composition of Foods 0
b]?é(? H O Percent by Weight
cflBsss &
" 0 Food . U Carbo- O
0
Composition of Foods 0 DProteln E Fat Ehydrate 0
T2 “Apples 0 4 050130 g
¢ Ocss alibut E 184 052 0 .. [
c Ocss [Lima beans 7.5 E .8 g 220 O
i a
¢ Oc Oc Oc. . EM”kh O 3-335 D4'2 0 56(()) 0
Food® Percent by Weight i‘us roomst 35 .4 g 00 o
@ yebread H 9.0 g .6 g 527

\"@ Protein® Fat® Carbo-
\"@O\V @\ @hydrate

T&

| On On On.

Apples® .4@® .5@®13.0
Halibut®18.4®5.2®. . .
Lima bean§&7.5@® .8®22.0
Milk ©3.3®4.0®5.0
Mushroomsp3.5@ .4@6.0
Rye brea9.0® .6@®52.7
.TE

-10 -

Input: Output:
TS d New York Area Rocks d
allllboxi = Era O Formaton O Age(years) S
g iw(sli) cw(li) [Precambrian HReading Prong H>1 billion O
Ip9 Ip9 Ipo. ~Paleozoic] ManhattaRrong 1400 million E
New York Area Rocks E\/Iesozoic D_Newark Basin, E 200million 0
Era® Formatior® Age (years) 0 incl. Stockton, 5 0
Precambriaf® Reading Pron@>1 billion O Lockatong, and .
: s 0 Brunswick forma- 0
Paleozoi¢ Manhattan Pron@ 400 million 0 gz O 0
Mesoz0idD T{ gtions; also O
a g Watchungs and [] E
: o (Palisades. O
Newark Basin, incl = enozoic UcoastalPlain Uon Lon IslandD
Stockton, Lockatong, and Brunswick Ep 0 30.000 ygarsCre- E
for31|e:1)t|<|).ns;dalso Watchungs 0 B taceous sediments]
and Palisades i
T} ®200 million q . O ont slacition. B
Cenozoic» Coastal Plaifd T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation
.ad
T}
.TE
Input: Output:
EQ [MName Definition g
delim $$ i
EN (-l i
msamma F(z)—J'Olt e ldt g
%ine sin(<)=7(e"‘ -e™™) 0
[z i8]
TS [mError erf(z)zvi_]’0 e tdt il
doublebox; 1nn g
essel Jo(z)==| cosfsinB)d6
|C|C o(z) wnIO sinb) %
Name® Definition %eta {(s)=2 k™ (Res>1)
.Sp k=1]
VS +2p

Gammar$GAMMA (z) = int sub 0 sup inft sup{z-1} e sup -t dt$

Sine®$sin (x) = 1 over 2i (e sup ix - e sup -ix)$

Error®$ roman erf (z) = 2 over sqrt pi int sub 0 sup z e{stisup 2 dt$
Bessel®$ J sub 0 (z) = 1 over pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta®$ zeta (s) = sum from k=1 to inf k sup™$ Re"s> 1)$

VS -2p

.TE

Input:

.TS

box, tab(:);

cbssss

Cp-2sSSsS

cOdcOcOcdc

cOdcOcOcdc

r2 00n2 On2 On2 On.

Readability of Text

Line Width and Leading for 10-Point Type

Line : Set: 1-Point: 2-Point : 4-Point
Width : Solid : Leading : Leading : Leading

9 Pica\-9.3:1-6.0:\-5.3:\-7.1

14 Pica\-4.5:\-0.6:\-0.3:\-1.7
19 Pica\-5.0:\-5.1: 0.0:\-2.0
31 Pica\-3.7:\-3.8:\-2.4:\-3.6
43 Pica\-9.1:\-9.0:\-5.9:\-8.8
.TE

-11 -

Output:

Readability of Text
Line Width and Leading for 10-Point Type

mOoo
oOoo

n Line [MSet O1-Point O2-Point 0 4-Pointy
DWidth TSolid OLeading™ Leading? Leading

|:| R URI]]]] D
9 Picar9.3 ; -6.0 § =53 5 -7.1 .
4 Picagp-45 -06 o -03 g -17

L9 Pical-5.0 0 -5.1 0O 00 O -20

Bl Picall3.7 0 —38 U —24 0 —36Q

3 Picaff 9.1 H —90 H -59 H -88H

Input:

TS

cs

cip-2 s

In

an.

Some London Transport Statistics
(Year 1964)

Railway route mile® 244
Tube® 66

Sub-surfac® 22

Surfacen 156

.Sp .5

T&

Ir

ar.

Passenger traffic railway
Journey$p 674 million
Average lengti® 4.55 miles
Passenger milés 3,066 million
T&

Ir

ar.

Passenger traffic road
Journey$p 2,252 million
Average lengtip 2.26 miles
Passenger milés5,094 million
T&

In

an.

.Sp .5

Vehiclesp 12,521

Railway motor car® 2,905
Railway trailer car® 1,269
Total railway®4,174
Omnibuse& 8,347

T&

In

an.

.Sp .5

Staff® 73,739
Administrative, etc®5,582
Civil engineeringp5,134
Electrical eng®1,714
Mech. eng. \- railway®4,310
Mech. eng. \- roadD 9,152
Railway operation® 8,930
Road operation® 35,946
Other® 2,971

.TE

-12 -

Output:

Some London Transport Statistics

(Year 1964)
Railway route miles
Tube
Sub-surface
Surface

Passenger traffie railway
Journeys
Average length
Passenger miles
Passenger traffie road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng- railway
Mech. eng- road
Railway operations
Road operations
Other

244

66
22
156

674million
4.55miles
3,066 million

2,25illion
2.26 miles
5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1,714
4,310

9,152
8,930
35,946
2,971

13-

Input:

.ps 8

.vs 10p

TS

center box;

S

ciss

ccc

B In.

New Jersey Representatives

(Democrats)

.Sp .5

Name® Office addres® Phone

.Sp .5

James JFlorio®23 S. White Horse Pike, Somerdale 08@8809-627-8222
William J. Hughesp 2920 Atlantic Ave, Atlantic City 084010 609-345-4844
James JHoward® 801 Bangs Ave Asbury Park 0771@201-774-1600
Frank Thompson, J(10 Rutgers Pl Trenton 08618 609-599-1619
Andrew MaguiréD 115 W. Passaic St Rochelle Park 07662201-843-0240
Robert A Roe®U.S.P.0O., 194 Ward St, Paterson 07510 201-523-5152
Henry Helstoskio 666 Paterson Ave East Rutherford 07078201-939-9090
Peter W. Rodino, Jt @ Suite 1435A, 970 Broad StNewark 071020 201-645-3213
Joseph G Minish@308 Main St, Orange 0705@ 201-645-6363

Helen S Meyner® 32 Bridge St, Lambertville 0853® 609-397-1830
Dominick V. Daniels© 895 Bergen Ave Jersey City 07306 201-659-7700
Edward J Patterib Natl. Bank Bldg., Perth Amboy 0886® 201-826-4610
.Sp .5

T&

ciss

B In.

(Republicans)

.Sp .5v

Millicent Fenwick®41 N. Bridge St, Somerville 08876>201-722-8200
Edwin B. ForsytheD301 Mill St., Moorestown 0805® 609-235-6622
Matthew 1 Rinaldo®1961 Morris Ave, Union 070830201-687-4235

.TE

.ps 10

Vs 12p

Output:

This is a paragraplof normal text placed here only to indicate where the left and right margindrare.
this way the readercan judge the appearance of centered tables or expanded tables, and observe how

- 14 -

Name

ooooo

[Dames J. Florio
Huilliam J. Hughes
ames J. Howard

Frank Thompson, Jr.

CAndrew Maguire
obert A. Roe
enry Helstoski
Peter W. Rodino, Jr.
[Doseph G. Minish
CHelen S. Meyner
ominick V. Daniels
rEdward J. Patten
O
O
EMillicent Fenwick
CEdwin B. Forsythe
FMatthew J. Rinaldo

New Jersey Representatives
(Democrats)

Officeaddress Phone

23 S. White Horse Pike, Somerdale 08083 609-627-82220]
2920 Atlantic Ave., Atlantic City 08401 609-345-48440
801 Bangs Ave., Asbury Park 07712 201—774—1600D
10 Rutgers PI., Trenton 08618 609-599-1619
115 W. Passaic St., Rochelle Park 07662 201-843-02400
U.S.P.O., 194 Ward St., Paterson 07510 201-523-5152U
666 Paterson Ave., East Rutherford 07073 201-939-9090,
Suite 1435A, 970 Broad St., Newark 07102201-645-3213
308 Main St., Orange 07050 201-645-63630
32 Bridge St., Lambertville 08530 609-397-18301
895 Bergen Ave., Jersey City 07306 201-659-7700D
Natl. Bank Bldg., Perth Amboy 08861 201-826-46100

(Republicans) B
41 N. Bridge St., Somerville 08876 201—722—8200%
301 Mill St., Moorestown 08057 609-235-66220
1961 Morris Ave., Union 07083 201-687-4235H

Ooooong

such tables are formatted.

Input:

.TS
expand,;
CSSsSs
cccc
l1nn.

Bell Labs Locations
Name® Addressp Area CodéD Phone
Holmdel®Holmdel, N. J. 07733D201® 949-3000
Murray Hill@Murray Hill, N. J. 07974D201®582-6377
Whippany® Whippany, N J. 07981D201® 386-3000
Indian Hill@ Naperville, lllinois 60540 312® 690-2000

.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations

Address Area Code
Holmdel, N. J. 07733 201
Murray Hill, N. J. 07974 201
Whippany, N. J. 07981 201

Naperville, lllinois 60540 312

Phone
949-3000
582-6377
386-3000
690-2000

- 15 -

Input:
.TS
box;
cb s s s
clclc s

Itiw(1i) Oltw(2i) Olp8 Olw(1.6i)p8.
Some Interesting Places

NameD DescriptiodD Practical Information

T{

American Museum of Natural History

TIOT{

The collections fill 115 acres (Michelin) or 25 acres (MTA)

of exhibition halls on four floors There is a full-sized replica

of a blue whale and the world’s largest star sapphire (stolen in 1964)
T} ®HoursD 10-5, ex Sun 11-5, Wedto 9

V@V @ LocatiodD T{

Central Park West & 79th St

T}

\"@\"@ Admissior® Donation: $1.00 asked
@O\ @ Subway®D AA to 81st St

V@OV @ TelephonéD 212-873-4225

Bronx ZodD T{

About a mile long and6 mile wide, this is the largest zoo in America
A lion eats 18 pounds

of meat a day while a sea lion eats 15 pounds of fish

T} ® HoursD T{

10-4:30 winter, to 5:00 summer

T}
V@V @ LocatiodD T{
185th St & Southern Blvd, the Bronx

T}

V@V @ AdmissiodD $1.00, but Tu,We, Th free
V@OV @ SubwayD 2, 5 to East Tremont Aue
V@OV @ TelephonéD 212-933-1759

Brooklyn MuseunfD T{

Five floors of galleries contain American and ancient art

There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylvania Station
T} @ HoursD Wed-Sat, 10-5, Sun 12-5

V@V @ LocatiodD T{

Eastern Parkway & Washington AyeBrooklyn.

T}

V@V ® AdmissiorD Free

V@OV @ SubwayD 2,3 to Eastern Parkway
V@OV @ TelephonéD 212-638-5000

T

New-York Historical Society

TIOT{

All the original paintings for Audubon’s
.
Birds of America

.R

are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights

T} @ HoursD T{

Tues-Fri & Sun, 1-5; Sat 10-5

T}
V@V @ LocatiodD T{
Central Park West & 77th St

T}

@\ @ AdmissiorD Free

V@OV @ Subway® AA to 81st St
V@V @ TelephonéD 212-873-3400
.TE

- 16 -

Output:

O Some I nteresting Places 0
H Name U Description 0 Practicallnformation %
[American Muse-—The collections fill 11.5 acres Hours U10-5, ex. Sun 11-5, Wed. to 9 [J
Lum of Natural p(Michelin) or 25 acres (MTA) of fLocation Ucentral Park West & 79th st. O
a-ﬁstory Dexhibition halls on four floors.[JAdmission Donation: $1.00 asked B
0O UThere is a full-sized replica of &lsubway [JAA to 81st St. 0
0 Ublue whale and the world's largest-Telephone [] 212-873-4225 0
O ostar sapphire (stolen in 1964). 5 O O
EBronx Z00 JAbout a mile longand .6 mile [OHours 510-4:30 winter, to 5:00 summer B
0 Dwide, this is thelargest zoo in Uiocation [j185th St & Southern Bivd, theq
0 Uamerica. A lion eats 18 pounds U [jBronx. 0
0 of meat a day while a sea lieats Admission []$1.00, but Tu,We,Th free 0
O 015 pounds of fish. DSubway U2, 5 to East Tremont Ave. O
0 0 Telephone X 212-933-1759 0
Eﬁrooklyn MuseumUFive floors of galleries contairiJHours — wed-Sat, 10-5, Sun 12-5 g
0 Uamerican and ancient artThere Uiocation [JEastern Parkway & Washingtonp)
O are American period roonmend ar- [JAve., Brooklyn. 0
§ chitectural ornaments saved fromAdmission U Free O
O Owreckers, such as a classical figurgSubway U2,3 to Eastern Parkway. O
H Ufrom Pennsylvania Station. [Telephone 5 212-638-5000 g
[New-York Histor- All the original paintings forHHours UTues-Fri & Sun, 1-5; Sat 10-5 [J
Ucal Society DAudubon’s Birds of America are [jLocation Ucentral Park West & 77th st. O
g Ohere, as are exhibitsf American [JAdmission [Free B
0 Udecorative arts, New York historyllsubway — [7AA to 81st St. 0
0 UHudson River school paintings,ETelephone [212-873-3400 0
5 pcarriages, and glass paperweight H]

Acknowledgments.

Many thanksare due to J. C. Blinn, who has done a large amount of testing and assisted with the
design of the programHe has also written many of the more intelligilslentencesn this document
and helped edit all of itAll phototypesetting programs amix are dependent on the work of the late J.
F. Ossannawhoseassistancawvith this program in particular had been most helpfiihis program is
patternedon a table formatter originally written by J. F. Gimpelhe assistance of T. A. Dolotta, B. W.
Kernighan, and J. N. Sturman is gratefully acknowledged.

References.

[1] J. F. OssannaJRoFHTROFF User’'s Manual,Computing Science Technical Report No. 54, Bell
Laboratories, 1976.

[2] K. Thompson and D. M. Ritchie, “The Nux Time-Sharing System,”Comm. ACM.17, pp.
365-75 (1974).

[3] B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematicdgmm. ACM.18,
pp. 1557 (1975).

[4] M. E. Lesk,Typing Documents onnNux, UNIX Programmer’'s Manual, Volume 2.

[5] M. E. Lesk and B. W. KernigharComputer Typesetting of Technical Journals UNiX, Proc.
AFIPS NCC vol. 46, pp. 879-888 (1977).

[6] J. R. Mashey and D. W. Smith, “Documentation Tools and Techniguast. 2nd Int. Conf. on
Software Engineeringgp. 177-181 (October, 1976).

-17 -

List of Tbl Command Characters and Words

Command Meaning Section
aA Alphabetic subcolumn 2
allbox Draw box around all items 1
bB Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width 1
fF Font change 2
il Italic item 2
I L Left adjusted column 2
nN Numerical column 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted column 2
sS Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T{ T} Text block 3
vV Vertical spacing change 2
w W Minimum width value 2
XX Includedtroff command 3
O Vertical line 2
0o Double vertical line 2
~ Vertical span 2
\» Vertical span 3
= Double horizontal line 2,3
_ Horizontal line 2,3
\ Short horizontal line 3
\Rx Repeat character 3

Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 69

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

June 21, 1978

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

I. Some Applications of Inverted Indexes — Overview

This memorandum describes a set of programs which make inverted indexes to
UNIX* text files, and their application teetrieving and formatting citationsfor docu-
ments prepared usingpff.

Theseindexing and searching programs make keyword indexes to volumes of
material too large for linear searchingearches for combinations of single words can
be performedquickly. The programs are divided into two phaseBhe first makes an
index from the original data; the second searches the index and retrieves Beths.
of these phases are further divided into two parts to sepéwattata-dependerand
algorithm dependent code.

The major current application of these programs is tradf preprocessorefer.
A list of 4300referencess maintained on line, containing primarily papers written and
cited by local authors. Whenever one of these references is required in a paper, a few
words from the title or author list will retrieve it, and thserneednot botherto re-
enter the exact citationAlternatively, authors can use their own lists of papers.

This memorandum is of interest to those wd@ interestedin facilities for
searchindarge but relatively unchanging text files on the UNIX system, and those who
are interested in handling bibliographic citations with UNitff.

II. Updating Publication Lists

This section is a brief note describing the auxiliary programs for managing the
updating processing. It is written to aid clerical users in maintaining lisi refer-
ences. Primarily, the programs described permit a large amount of individual control
over the content of publication lists while retaining the usefulnedbediles to other
users.

[11. Manual Pages

This section containsthe pagesfrom the UNIX programmer’s manual for the
lookall, pubindex,andrefer commands.lIt is useful for reference.

* UNIX is a Trademark of Bell Laboratories.

June 21, 1978

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

TheuNixt system has many utilities (egyep, awk, lex, egrep, fgrep,)..to search through files
of text, but most of them are based on a linear scan through the entire file, using some deterministic
automaton. This memorandum discusses a program which imsestedindexes and can thus be used
on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once as inade,the
files that have beerindexedcan not be changed without remaking the ind&kus applications are res-
tricted to those making many searches of relatively stable drateghermore, these progrardependon
hashing, and can only search for exact matches of whole keywlirdsnot possible to look for arith-
metic or logical expressionge.g. “date greater than 1970") or for regular expression searching such as
that inlex?

Currently there are two uses thiis software,the refer preprocessor to format references, and the
lookall command to search through all text files onukex system.

The remaining sections of this memorandum disthissearchingprogramsand their uses. Sec-
tion 2 explains the operation of the searching algorithm and describes the data collected for e with
lookall command. The more important applicatiorefer has a user’s description in section Section
4 goes into more detail on reference files for the benefit of tvbsewish to add referencedo data
bases or write newroff macros for use witlhefer. The options to makeefer collect identical citations,
or otherwise relocate and adjust references, are described in sectiime BNIX manual sections for
refer, lookall, and associated commands are attached as appendices.

2. Searching.

The indexing and searching process is divided into two phasesmealdof two parts. These are
shown below.

A. Construct the index.

(1) Find keys — turn the input files into a sequence of tags and keys, where each tag identifies
a distinct item in the input and the keys for each such item are the strings under which it is
to be indexed.

(2) Hash and sort — prepare a set of inverted indexes from which, given a set othieeys,
appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

TUNIX is a Trademark of Bell Laboratories.

1. D. Knuth, The Art of Computer Programming: Vol. 3, Sorting and Searchialglison-Wesley, Reading, Mass. (1977).
See section 6.5.

2. M. E. Lesk, “Lex — A Lexical Analyzer Generator,” Comp. Sci. Tech. Rep. No. B8]l Laboratories, Murray Hill,
New Jersey (D).

2.

(3) Search — Given some keys, look through the files prepared by the hashing and sorting facil-
ity and derive the appropriate tags.

(4) Deliver — Given the tags, find the original item&his completeshe searchingprocess.

The first phase, making the index, is presumaluye relatively infrequently. It should, of course,be
done whenever the data being indexed chanige.contrast, the second phase, retrieving items, is
presumably done often, and must be rapid.

An effort is madeto separatecode which depends on the data being handled from code which
dependson the searchingprocedure. The search algorithm is involved only in steps (2) and B)le
knowledge of the actual data files is needed only by stepan@{4). Thusit is easyto adapt todif-
ferent data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input files.
For dealing with files that are basically English, we have a key-making program which automatically
selects words and passes them to the hasdmdgsorting program(step 2). The format usedhasone
line for each input item, arranged as follows:

name:start,length (tab) keyl key2 key3 ...

wherenameis the file namestart is the starting byte number, atehgth is the number of bytes in the
entry.

These lines are the only input used to mtideeindex. The first field (the file name,byte position,
and byte count) is the tag of the item and can be tesegtrieveit quickly. Normally, anitem is either
a whole file or a section of a file delimited by blank linédter the tab, the second field contaihe
keys. The keys, if selectedby the automatic program, are any alphanumeric strings which are not
among the 100 most frequent words in English and which are not entirely numeric (except for four-digit
numbersbeginningl19, which are accepted as dateKeys are truncated to six characters and converted
to lower case. Some selection is needed if the original items are very la¥ge.normally just take the
first n keys, withn less than 100 or so; this replaces any attempt at intelligent seleGium file in our
system is a complete English dictionary; it would presumably be retrieved for all queries.

To generatean invertedindexto the list of record tags and keys, the keys are hashed and sorted to
produce an index.What is wanted, ideally, is a series of lists showing the tags associated with each
key. To condensehis, what is actually produced is a list showing the tags associated with each hash
code, and thus with some set of keyBo speedup accessand further savespace a setof threeor pos-
sibly four files is producedThese files are:

File Contents
entry Pointers to posting file
for each hash code
posting Lists of tag pointers for
each hash code

tag Tags for each item
key Keys for each item
(optional)

The postingfile comprisesthe real data:it contains a sequence of lists of items posted under each hash
code. To speed up searching, the entry file is an arrgyoaftersinto the postingfile, one per potential
hashcode. Furthermorethe items in the lists in the posting file are not referred to by their complete
tag, but just by an address in the tag file, which gives the complete taye key file is optional and
contains a copy of the keys used in the indexing.

The searching process starts with a query, containing several Kagsgoalis to obtainall items
which wereindexedunderthesekeys. The querykeys are hashed, and the pointers in the entry file used
to access the lists in the posting fil€hese lists are addresses in the tag file of documents posted under
the hash codes derived from the quefhe common items from all lists are determined; this must
include theitemsindexedby every key, but may also contain some items which are false drops, since
items referenced by the correct hash codes need not actually have cothair@dectkeys. Normally,

-3-

if there are several keys in the query, there ardikely to be many false dropsin the final combined

list eventhough each hash code is somewhat ambigudb actual tags are then obtained from the tag
file, andto guardagainstthe possibility that an item has false-dropped on some hash code in the query,
the original items are normally obtained from the delivery programafd)the query keys checked
against them by string comparison.

Usually, therefore, the check for bad drops is made against the originaHbilgever,if the key
derivation procedure is complex, it may be preferable to check against thée#lagsprogram(2). In
this casethe optional key file which contains the keys associated with each item is generated, and the
item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for each
item. This file is not usually necessarywith the present key-selection program, since the keys always
appear in the original document.

There is also an optio@Cn) for coordination level searchingThis retrieves items which match
all butn of the query keys.The items are retrieved in the order of thenberof keysthat they match.
Of course,n must be less than the number of query keys (nothing is retrieved unless it matelass at
one key).

As an example, consider one set of 4377 references, comprising 6&¥#@30 This included
51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the
expense of time); 995 of 997 possible hash codes were Udealtotal setof index files (no key file)
included171,000bytes,about26% of the original file size.It took 8 minutes of processor time to hash,
sort, andwrite the index. To search for a single query with the resulting index took 1.9 seconds of pro-
cessortime, while to find the same paper with a sequential linear search grepgreading all of the
tags and keys) took 12.3 seconds of processor time.

We have also used this software to index all of the English stored amiousystem. Thiss the
index searched by theokall command. On a typical day there were 29,000 files in our dsBersys-
tem, containingabout152,000,00(ytes. Of these 5,300 files, containing 32,000,000 bytes (about 21%)
were English text. The total number of ‘words’ (determined mechanically) was 5,100,@0these
227,000 were selected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible) different hash
codes. The resultinginvertedfile indexesused845,000bytes, or about 2.6% of the size of the original
files. The particularly small indexes are caused by the fact that keys are taken from only th@ first
non-common words of some very long input files.

Even this largdookall index can be searched quicklyfzor example,to find this documentby
looking for the keys “lesk inverted indexes” required 1.7 seconds of processor time and system time.
By comparison, just to search the 800,000 byte dictionary (smaller than even the inverted indexes, let
alone the 32,000,000 bytes of text files) wgtiep takes 29 seconds of processor tiniéhe lookall pro-
gramis thus useful when looking for a document which you believe is stored on-line, but do not know
where. For example, many memos from the Computing ScidResearchCenterare in its UNIx file
system, but it is often difficult to guess where a particular memo might beight have several
authors,eachwith manydirectories,and havebeen worked on by a secretary with yet more directories).
Instructions for the use of tHeokall command are given in the manual section, shown in the appendix
to this memorandum.

The only indexes maintained routinely are those of publication lists and all EfilgisshTo make
other indexes, the programs for making keys, sorting them, seartiénmdexes, and delivering
answersmustbe used. Since they are usually invoked as parts of higher-level commands, they are not
in the default command directory, but are available to any user in the diréasofijb/refer. Three
programs are of interestmkey, which isolates keys from input filesv, which makes an index from a
set of keys; andhunt, which searches the index and delivers the iteidste thatthe two partsof the
retrieval phase are combined into one program, to avoid the excessive system wdedagnahich
would result from running these as separate processes.

Thesethree commandshavea large number of options to adapt to different kinds of inftie

-4 -

user not interested in the detailed description that now follows skigyto section3, which describes
the refer program,a packaged-up version of these tools specifically oriented towards formatting refer-
ences.

Make Keys. The programmkeyis the key-making program corresponding to step (IphaseA.
Normally, it reads its input from the file names given as argumantbif there areno argumentsit
reads from the standard input assumes that blank lines in the input delimit sepatanes, for eachof
which a different line of keys should be generatéthe lines of keys are written on the standard output.
Keys are any alphanumericstring in the input not among the most frequent words in English and not
entirely numeric (exceptthat all-numeric strings are acceptable if they are between 1900 and 1899).
the output, keys are translated to lower case, and truncated to six characters in length; any associated
punctuation is removedThe following flag arguments are recognizednhkey:

—cname Name of file of common words; default/issr/lib/eign.
—f name Read a list of files froormame and take each as an input argument.
—i chars Ignore all lines which begin with ‘%’ followed by any character in

chars.

—kn Use at mosh keys per input item.

—In Ignore items shorter tham letters long.

—-nm Ignore as a key any wolid the first m words of the list of common
English words. The default is 100.

-s Remove the labelgfile:start,length) from the output; just give the
keys. Used when searching rather than indexing.

—-w Each whole file is a separate item; blank lines in files are irrelevant.

The normal arguments for indexing references are the defatiitsh are—c /usr/lib/eign, —n100,
and-I3. For searching, thes option is also neededWhen the bigookall index of all English files
is run, the options arew, —k50, and—f (filelist). When running on textual input, thakey program
processes about 1000 English words per processor setbndss the-k option is used (and the input
files are long enough for it to take effect) the outpumn&kyis comparable in size to its input.

Hash and invert. The inv program computes the hash codes and writes the inverted files.
reads the output ahkey and writes the set of files described earlier in this sectibexpectsoneargu-
ment, which is used as the base name forthhee (or four)files to be written. Assumingan argument
of Index (the default) the entry file is naméuablex.ia, the posting fildndex.ib, the tag filelndex.ic, and
the key file (if presentindex.id. Theinv program recognizes the following options:

-a Append the new keys to a previous seimertedfiles, making new
files if there is no old set using the same base name.
—d Write the optional key file.This is needed when you camt check

for false drops by looking for the keys in the original inputs, i.e.
when the key derivation procedurecismplicatedand the outputkeys
are not words from the input files.

—hn The hash table size s (default 997);n should be prime.Making n
bigger saves search time and spends disk space.

—i[u] name Take input from filename instead of the standanthput; if u is
presentname is unlinked when the soi$ started. Using this option
permits the sort scratch space to overlapdisk spaceusedfor input

keys.
-n Make a completely new set of inverted files, ignoring previous files.
-p Pipe into the sort program, rather than writing a temporary input file.
This saves disk space and spends processor time.
-V Verbose mode; print a summary of the numlmér keys which

finished indexing.

About half the time usedh inv is in the contained sortAssuming the sort is roughly linear,
however, a guess at the total timing fov is 250 keys per second. The space used is usually of more

-5-

importance: the entry file uses four bytes per possible hash (notehhaption), and the tag file around
15-20bytesperitem indexed. Roughly,the postingfile contains one item for each key instance and one
item for eachpossiblehashcode; the items are two bytes long if the tag file is less than 65336 hytes
long, and the items are four bytes wide if the fitgyis greaterthan 65536 byteslong. To minimize
storage, the hash tables should be over-full; for most of the files indexki imay, thereis no other

real choice, since thentry file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an indeX. combines, as
mentionedabove,the two parts of phase (B)search and delivery.The reason why it is efficient to
combinedelivery and search is partly to avoid starting unnecessary processes, and partly because the
delivery operation must be a part of the search operation in any &esmuseof the hashing,the
search part takes place in two stagéisst items are retrieved which hatiee right hashcodesassoci-
ated with them, and then the actual items are inspected to determine false drops, toedetermine if
anything with the right hash codes doesn't really have the right ke$mce the original item is
retrieved to check on false drops, it is efficient to present it immediaathgrthan only giving the tag
as output and later retrieving the item agalhtherewere a separatekey file, this argumentwould not
apply, but separate key files are not common.

Input to hunt is taken from the standard input, one query per likach query should be imkey
—s output format; all lower case, no punctuatiofhe hunt program takes one argument which specifies
the base name of the index files to be searcti@aly one sebf index files can be searchedht a time,
although many text files may be indexed as a group, of colfreme of the text files halseenchanged
since the index, that file is searched wigiep; this may occasionally slow down the searching, and
care should be taken to avoid having many out of date fil&g following option argumentsare recog-
nized byhunt:

-a Give all output; ignore checking for false drops.

-Cn Coordination leveln; retrieve items with not more tham terms of
the input missing; defaulCO, implying that each search term must
be in the output items.

—F[ynd] “—Fy” gives the text of all the items found; ‘Fn” suppresses
them. “—Fd” where d is an integer gives the text of the firt
items. The default is-Fy.

| Do notusefgrep to search files changed since the index was made;

print an error comment instead.

—i string Takestring as input, instead of reading the standard input.

—In The maximumlength of internal lists of candidate itemsnis default
1000.

—ostring Put text output (“-Fy”) in string; of useonly when invokedfrom
another program.

-p Print hash coddrequenciesmostly for use in optimizing hash table
sizes.

—-T[ynd] “-=Ty" gives the tags of thétems found; “— Tn” suppresseshem.
“—Td"” where d is an integer giveshe first d tags. The default is
-Tn.

—t string Put tag output (“Ty”) in string; of useonly when invoked from
another program.

The timing ofhunt is complex. Normally the hash table is overfull, so that there will be many
false drops on any single term; but a multi-term query will have few false drops on all fEs.if a
query is underspecified (one search term) many potential items will be examindis@ardedas false
drops,wastingtime. If the query is overspecified (a dozen search terms) many keys will be examined
only to verify that the single item under consideration has thapkseted. The variation of searchtime
with numberof keys is shown in the table belovQueries of varying length were constructed to retrieve
a particular document from the file of referencés.the sequence to the lefiearchtermswere chosen
so as to select the desired paper as quickly as possiblbe sequence on the righgymswere chosen
inefficiently, so that the query did not uniquely select the desired document until fouhdgpeen

-6 -

used. The samedocumentwasthe target in each case, and the final set of eight keys are also identical;
the differences at five, six and seven keys are produced by measurement etogriheoslightly dif-
ferent key lists.

Efficient Keys U Inefficient Keys

No. keys Total drops Retrieved Seartime g No. keys Total drops Retrieved Seartime
(incl. false) Documents (seconds) 0 (incl. false) Documents (seconds)

1 15 3 1.27 O 1 68 55 5.96
2 1 1 0.11 d 2 29 29 2.72
3 1 1 014 O 3 8 8 0.95
4 1 1 017 o 4 1 1 0.18
5 1 1 0.19 0 5 1 1 0.21
6 1 1 0.23 O 6 1 1 0.22
7 1 1 0.27 d 7 1 1 0.26
8 1 1 029 H 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer; however,
overspecification is quite cheapRoughly, the time required blgunt can be approximated as 30 mil-
liseconds per search key plus 75 milliseconds per dropped document (whether it isdeofatsea real

answer). In general, overspecification can be recommended; it protects the user against additions to the
data base which turn previously uniquely-answered queries into ambiguous queries.

The careful reader will have noted an enormous discrepancy between these times and the earlier
guoted time of around 1.9 seconds for a seaifie times here are purely for the seaack retrieval:
they are measured by running many searches through a singlation of the hunt program alone.
Usually, the UNIX command processor (the shell) must start botmkiey and hunt processes for each
query, and arrange for the outputrokeyto be fed to thdwunt program. This adds a fixed overhead of
about 1.7 seconds of processor time to any single se&ngtthermorerememberthat all thesetimes
are processortimes: on a typical morning on oupbdp 11/70 system, with about one dozen people
logged on, to obtain 1 second of processor timeHeisearchprogramtook between2 and 12 seconds
of real time, with a median of 3.9 seconds and a mean of 4.8 secdhds, although the work
involved in a single search may be only 200 milliseconds, after you add the 1.7 seconds of startup pro-
cessor time and then assume a 4:1 elapsed/processor time ratio, it will be 8 secondmpefsmonse
is printed.

3. Selecting and Formatting References for TROFF

The major application of the retrieval softwareéger, which is atroff preprocessor likegn.3 It
scans its input looking for items of the form

!

imprecise citation
]

where an imprecise citation is merely a string of words found in the relevant bibliographic citétisn.

is translated into a properly formatted referendethe imprecise citation does not correctly identify a
single paper (either selecting no papers or too many) a message is Ghiveidata baseof citations
searched may be tailored to each system, and individual users may specify their own citati@nfiles.
our system, the default data base is accumulated from the publitsisasf the membersof our organi-
zation, plus about half a dozen personal bibliographies that were colleEhedpresent total iabout
4300 citations, but this increases steadiiven now, the data base covers a large fracifdocal cita-
tions.

For example, the reference for tegn paper above was specified as

3. B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathemati€ymm. Assoc. Comp. Mact8, pp.151-157
(March 1975).

preprocessor like

1 eqgn.

1l

kernighan cherry acm 1975
]

It scans its input looking for items

This paper was itself printed usimgfer. The above input texivas processedy refer as well astbl
andtroff by the command

refer memo-filddtbl Otroff —ms

andthe referencewas automaticallytranslated into a correct citation to the ACM paper on mathematical
typesetting.

The procedure to use to place a referance paperusingrefer is as follows. First, use thdook-
bib command to check that the paper is in the data base and to find out what keys are necessary to
retrieveit. This is done by typindpokbib and then typing some potential queries until a suitable query
is found. For example, had one started to find éom paper shown above by presenting the query

$ lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the query
given above is adequatedverspecifying the query is of course harmlesss gvendesirablesinceit
decreases the risk that a document added to the publicatiohatsim the future will be retrievedin
addition to the intendeddocument. The extratime takenby even a grossly overspecified query is quite
small. A particularly carefulreadermay have noticed that “acm” does not appear in the printed cita-
tion; we havesupplemented some of the data base items with extra keywords, such as common abbrevi-
ations for journals or other sources, to aid in searching.

If the referenceis in the database,the query that retrieved it can be inserted in the text, between
[and.] brackets. If it is not in the data base, it can be typetb a privatefile of referencesusingthe
format discussed in the next section, and then-tpeoption used to search this private fil&uch a
command might read (if the private references are callgile)

refer —p myfile documerifitbl OeqgnOtroff —ms. . .

wheretbl and/oregn could be omitted if not neededhe use of the-ms macroé or some other macro
package, however, is essentidRefer only generates the data for the references; exact formatting is
done by some macro package, and if none is supplied the references will not be printed.

By default, the references are numbered sequentially, andnisemacros format references as
footnotes at the bottom of the pag€his memorandum ian exampleof that style. Other possibilities
are discussed in section 5 below.

4. Reference Files.

A reference file is a set of bibliographic references usable refér. It can be indexed using the
software described in section 2 féast searching. What refer does is to read the input document
stream, looking for imprecise citation referencéisthen searches through reference files to findfiulie
citations,andinserts them into the documenthe format of the full citation is arranged to make it con-
venient for a macro package, such as-thes macros,to format the reference for printingSince the
format of the final reference is determined by the desired efytmitput, which is determinedby the

4. M. E. Lesk,Typing Documents on UNIX and GCOShe-msMacrosfor Troff, 1977.

-8-

macros usediefer avoidsforcing any kind of referenceappearance All it does is define a set of string
registerswhich contain the basic information about the reference; and provide a macro call which is
expanded by the macro package to format the refereihds.the responsibilityof the final macropack-

age to see that the reference is actually printed; imagrosare used,and the output of refer fed
untranslated taroff, nothing at all will be printed.

The strings defined byefer are taken directly from the files of references, which are in the fol-
lowing format. The referenceshouldbe separated by blank line&ach reference is a sequence of lines
beginning with% and followed by a key-letterThe remainder of that line, and successive lines until
the next line beginning witlo, contain the information specified by the key-lettém. general,refer
does not interpret the information, but merely presents it to the macro packdgalféormatting. A
user with a separate macro package, for example, can add new key-letters or use the existing ones for
other purposes without botheringfer.

The meaning of the key-letters given below, in particulathét assignedby the —ms macros.
Not all information, obviously, is used with each citatidror example, if a document is both an inter-
nal memorandum and a journal article, the macros ignore the memorandum version and cite only the
journal article. Somekinds of information are not used at all in printing the reference; if a user does not
like finding referencedy specifying title or author keywords, and prefers to add specific keywords to
the citation, a field is available which is searched but not prittéd (

The key letters currently recognized tafer and—ms, with the kind of information implied, are:

Key Information specified Key Information specified
A Author’s name N Issuenumber

B Title of book containing item (0] Other information

C City of publication P Page(s) of article

D Date R Technical report reference
E Editor of book containing item T Title

G Government (NTIS) ordering number \% Volume number

I Issuer(publisher)

J Journahame

K Keys (for searching) X or

L Label Y or

M Memorandum label Z Information not used byefer

For example, a sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctrl27

%A A. V. Aho

%A D. S. Hirschberg

%A J. D. Ullman

%J J. ACM

%V 23

%N 1

%P 1-12

%M abcd-78

%D Jan. 1976

Order is irrelevant, except that authors are shown in the grden. The outputof refer is a stream of
string definitions, one for each of the fields of each reference, as shown below.

J-

.ds [A authors’ names.
ds [T title...

.ds [J journal...

][type-number

The refer program, in general, does not concern itself with the significahtiee strings. The different
fields are treated identically bgfer, except that the X, Y and fields areignored(seethe —i option of
mkey) in indexing and searchingAll refer does is select the appropriate citation, basedherkeys.
The macro package must arrange the strings so @®doicean appropriatelyformattedcitation. In this
process, it uses the convention that the ‘T’ field is the title, the ‘J’ field the journal, and so forth.

The refer program does arrange the citation to simplify the macro package’s job, howgwer.
special macra]—- precedes the string definitions ati specialmacro.] [follows. These are changed
from the input.[and.] so that running the same file througgfer again is harmlessThe .]- macro
can be used by the macro package to initializbe .][macro, which should be used to print the refer-
ence, is given an argumeiype-numberto indicate the kind of reference, as follows:

Value Kind of reference
Journalarticle

Book

Article within book
Technicalreport

Bell Labs technical memorandum
Other

QU h~hWNPE

The type is determined by the presence or absence of particular fieldsditattom (a journal article
musthavea ‘J’ field, a book must have an ‘I’ field, and so forthY.o a small extent, this violates the
above rule thatefer does not concern itself with the contents of the citatimwever,the classification
of the citation introff macroswould require a relatively expensive and obscure progr@ny macro
writer may, of course, preserve consistency by ignoring the argument id thacro.

The reference is flagged in the text with the sequence
* ([.number* (]

wherenumber is the footnote numberThe strings[. and.] should be used by the macro package to
formatthe referenceflag in the text. These strings can be replaced for a particular footnote, as described
in section 5. The footnote number (or other signal) is available to the reference m@as the string
register[F. To simplify dealing with a text reference that occurshatend of a sentencerefer treats a
referencewhich follows a periodin a special way.The period is removed, and the reference is preceded
by a call for the stringc. and followed by a calfor the string >. For example, if a reference follows
“end.” it will appear as

end*(<*([.numbern*(]*(>.

wherenumber is the footnotenumber. The macro package should turn either the stringr <. into a
period and deletethe otherone. This permits the output to have either the form “end[31].” or “&i¥d.

asthe macropackagewishes. Note that in one case the period precedes the number and in the other it
follows the number.

In some cases users wish to suspend the searamdgjerely usethe referencemacroformatting.
That is, the user doesn’t want to providsearchkey between.[and.] brackets, but merely the refer-
encelines forthe appropriatedocument. Alternatively, the usercan wish to add a few fields to those in
the reference as in the standard file owverride somefields. Altering or replacingfields, or supplying
whole references, is easily done by inserting lines beginning %ittany such line is taken as direct
input to the reference processor rather than keys to be searthes.

-10 -

|

keyl key2 key3..

%Q New format item

%R Override report name

]

makesthe indicateschangesto the result of searching for the keyall of the search keys must be
given before the firsto line.

If no search keys are provided, an entire citatanbe providedin-line in the text. For example,

if the eqn paper citation were to be inserted in this way, rather than by searching for it in the data base,

the input would read

preprocessor like

1 eqgn.

1|

%A B. W. Kernighan

%A L. L. Cherry

%T A System for Typesetting Mathematics
%J Comm. ACM

%V 18

%N 3

%P 151-157

%D March 1975

]

It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields ar@ormally turnedinto troff strings. Sometimes users would rather have them
defined as macros, so that otheaff commands can be placed irtee data. When this is necessary,
simply double the control characté in the data. Thus the input

{

%0V 23

%%M

Bell Laboratories,
Murray Hill, N.J. 07974

]
is processed byefer into

ds [V 23

.de [M

Bell Laboratories,
Murray Hill, N.J. 07974

The information afte®6%M is defined as a macro to be invoked .A while the information after
%V is turned into a string to be invoked hy[V. At present-ms expects all information as strings.

5. Collecting References and other Refer Options

Normally, the combination afefer and—ms formats output agroff footnotes which are consecu-
tively numbered and placed at the bottom of the padewever, options exist to place the references at

the end; to arrange references alphabetically by senior author; and to indicate references by strings in the

text of the form [Name1975a] rather than by numbathenevereferencesre not placedat the bottom
of a page identical references are coalesced.

-11 -

For example, the-e option torefer specifies that references are to be collected; in this case they
are output whenever the sequence

!
$LISTS

]

is encountered.Thus, to place references at the endaqfaper,the userwould run refer with the —e
option and place the above $LIST$ commands after the last line of theRefer will then move all
the references to that poinfTo aid in formatting the collected referencester writes the references
preceded by the line

J<
and followed by the line
1>
to invoke special macros before and after the references.

Another possible option teefer is the—s option to specify sorting of reference3he default, of
course, is to list references in the order presenfElde —s option implies the—e option, and thus
requires a

!
$LISTS

]

entry to call out the reference listThe —s option may be followed by a string of letters, numbers, and
‘+’ signsindicating how the referencesare to be sorted. The sort is done using the fields whose key-
letters are in the string as sorting keys; the numbers indicate how many of the fields are to be con-
sidered, with ‘+' taken as a large numberhus the defaultis —sAD meaning “Sort on senior author,
thendate.” To sort on all authors and then title, specifgA+T. And to sort on two authors and then
the journal, write-sA2J.

Other options taefer change the signal or label inserted in the text for each referémenally
these are just sequential numbers, and their exact placement (within brackets, as supetsdripts,
determined by the macro packag€he —| option replaces reference numbers by strings compostn of
senior author’s last name, the date, and a disambiguating It@mumber follows thé as in—13 only
that many lettersof the last name are used in the label strinfp abbreviate the date as well the form
-Im,n shortens the last name to the finstletters and the date to the lastdigits. For example, the
option —13,2 would refer to theegn paper (reference 3) by the sigri&dr75a, since it is the first cited
reference by Kernighan in 1975.

A user wishing to specify particular labels forpavate bibliography may use the —k option.
Specifying—kx causes the field to be used as a labellhe defaultis L. If this field ends in-, that
character is replaced by a sequence letter; otherwise the field is used exactly as given.

If none of therefer-produced signals are desired, the option entirely suppresses automatic text
signals.

If the user wishes to overridine —ms treatment of the reference signal (which is normally to
enclose the number in bracketsnroff and make it a superscript troff) this can be done easilyif
the lines.[or .] containanythingfollowing thesecharactersthe remainders of these lines are used to
surround the reference signal, instead of the defaliitus, for example, t@ay “See reference(2).”
and avoid “See referencs.the input might appear

See reference

L (

imprecise citation ...
D).

Note that blanks are significantin this construction. If a permanent change is desired in the style of

-12 -

reference signals, however, it is probably easier to redefine the dtringsd.] (which are used to
bracket each signal) than to change each citation.

Although normallyrefer limits itself to retrieving the data for the reference, and leaves to a macro
package the job of arranging that data as required by the local format, there are two specialooptions
rearrangements that can not be done by macro packddmes-c option puts fields into all upper case
(CAPs-SMALL CAPs in troff output). The key-letters indicated what information is to tbenslatedto
upper case follow the, so that-cAJ meansthat authors’ names and journals are to be in cdpe—a
option writes the names of authors last name first, that iB. Hall, Jr. is written asHall, A. D. Jr.

The citation form of theJournal of the ACM for example, wouldequire both —cA and —a options.
This produces authors’ names in the siERNIGHAN B. W.AND CHERRY, L. L. for the previous exam-
ple. The-a option may be followed by a number to indicate how many author names gheuld
reversedial (without any—c option) would produc&ernighan, B. W. and L. L. Cherrigr example.

Finally, there is also the previously-mentioned option to let the user specify a private file of
references to be searched before the public filste that refer does not insist on a previously made
index for these files.If a file is named which contains reference data ibutot indexed,it will be
searchedmore slowly) byrefer using fgrep. In this way it is easy for users to keep small files of new
references, which can later be added to the public data bases.

NROFFTROFF User’'s Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

NROFF and TROFF are text processors under tR®R11 UNIX Time-Sharing Systemthat format text for
typewriter-like terminalsand for a Graphic Systems phototypesetter, respectivighgy accept lines of text inter-
spersed with lines of format control information and format the text into a printable, pagioatedenthaving
a user-designed styleNROFF and TROFF offer unusual freedom in document styling, includingrbitrary style
headers and footers; arbitrary style footnotes; multiple automatic sequemteeringfor paragraphssections,
etc; multiple column output; dynamic font and point-size control; arbitrary horizanthVertical local motions
at any point; and a family of automatic overstriking, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare input
acceptableto both. Conditional input is provided that enables the user to entymat expresslydestinedfor

either program.NROFF can prepareoutputdirectly for a variety of terminal types and is capable of utilizing the
full resolution of each terminal.

Usage
The general form of invokinROFF (or TROFP at UNIX command level is
nroff options files (or troff options file

whereoptionsrepresents any of a number aftion argumentsandfiles represents the list of files containing the
document to be formattedAn argument consisting of a single minug {s taken to be a file nanmrrespond-
ing to the standardinput. If no file names are given input is taken from the standard inphe options, which
may appear in any order so long as they appear before the files, are:

Option Effect

—olist Print only pages whose page numbers appedistinwhich consists of comma-separated
numbers and number range& number range has the fortkM and means paged
throughM; a initial —N meansfrom the beginning to pagd; and a finalN- means from

N to the end.
—-nN Number first generated pafe
—sN Stop everyN pages. NROFF will halt prior to everyN pages (defaulN=1) to allow paper

loading or changing, and will resume upon receipt of a newlimOFFwill stop the pho-
totypesetter ever|l pages, produce a trailer to allow changing cassettes, and will resume
after the phototypesett&TART button is pressed.

—mname Prepends the macro filesr/libtmac.nameto the inputfiles
—raN Registera (one-character) is set .

—i Read standard input after the input files are exhausted.
—q Invoke the simultaneous input-output mode of tHaequest.

NROFHTROFF User's Manual
October 11, 1976

NRGFF Only

—Tname Specifies the name of the output terminal tyggurrently defined names aB¥ for the
(default) Model 37 Teletype, tn300 for the GE TermiNeB0O (or any terminal without
half-line capabilities),300S for the DASI-300S, 300 for the DASI-300, and450 for the
DASI-450 (Diablo Hyterm).

—-e Produce equally-spaced words in adjusted lines, using full terminal resolution.
TROFF Only

—t Direct output to the standard output instead of the phototypesetter.

—f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesetter is available, if currently busy.

-b TROFF will report whether the phototypesettertigsy or available. No text processings
done.

-a Send a printabléASCIl) approximation of the results to the standard output.

—-pN Print all characters in point si2¢ while retaining all prescribed spacings amdtions,to

reduce phototypesetter elasped time.

-9 Prepare output for the Murray Hill Computation Center phototypesettedieaut it to the
standard output.

Each option is invoked as a separate argument; for example,
nroff —o04,8-10 —T300S —mabc filel file2

requestdormatting of pages4, 8, 9,and 10 of a document contained in the files nafiledl and file2, specifies
the output terminal as BASI-300S, and invokes the macro packabe.

Various pre- and post-processors are available for use NRtbFF and TROFFE Theseinclude the equation
preprocessorfNEQN and EQN2 (for NROFF and TROFF respectively), and the table-construction preprocessor
TBL3. A reverse-line postprocess@OL? is available for multiple-colummROFF output on terminalsvithout
reverse-line abilityCOL expects the Model 37 Teletype escapeguenceshat NROFF produces by defaultTK4

is a 37 Teletype simulator postprocessor for printGOFF output on a Tektronix 4014.TCAT# is
phototypesetter-simulator postprocessorTROFF that produces an approximation of phototypesetter output on a
Tektronix 4014. For example, in

thl files O egn O troff —t options O tcat

the first O indicates the piping offBL's output to EQN's input; the second the piping dfQN's output to
TROFFs input; and the third indicates the piping DROFFs output to TCAT. GCAT# can be used to send
TROFF (—g) output to the Murray Hill Computation Center.

The remainderof this manualconsistsof: a Summary and Index; a Reference Manual keyed to the index; and a
set of Tutorial ExamplesAnother tutorial is [5].

Joseph F. Ossanna

References
[1] K. Thompson, D. M. RitchielJJNIX Programmer’s ManualSixth Edition (May 1975).

[2] B. W. Kernighan, L. L. CherryTypesettingMlathematics — User’s Guide (Second Editid®¢)l Laboratories internal
memorandum.

[3] M. E. Lesk,Tbl — A Program to Format TableBell Laboratories internal memorandum.
[4] Internal on-line documentation, @mIX.
[51 B. W. KernighanA TROFF Tutorial Bell Laboratories internal memorandum.

-2-

NROFHTROFF User's Manual
October 11, 1976

SUMMARY AND INDEX
Request Initial If No
Form Value* Argument Notes# Explanation
1. General Explanation
2. Font and Character Size Control

.psxN 10point previous E Point size; alsdstN.t

SssN 1236em ignored E Space-character size setN@6 em.t

.CSFNM off - P Constant character space (width) mode (fohtf
.bd FN off - P Emboldenfont F by N-1 units.t

bd SFN off - P Embolden Special Font when current fonfig
ftF Roman previous E Change to fonF = x, xx, or 1-4. Also \fx, \f(xx, \fN.
fPNF R,,B,S ignored - FontnamedF mounted on physical positioreii<4.
3. Page Control

pl£N 11lin 11lin % Page length.

.bp £N N=1 - Btyv Eject current page; next page number

.pn =N N=1 ignored - Next page numbek.

.po =N 0; 2627 in previous % Page offset.

.neN - N=1V D,v NeedN vertical space\(= vertical spacing).

.mk R none internal D Mark current vertical place in registBr

It N none internal D,v Return(upward only)to marked vertical place.

4. Text Filling, Adjusting, and Centering

br - - B Break.

fi fill - B,E Fill output lines.

.nf fill - B,E No filling or adjusting of output lines.
adc adj,both adjust E Adjust output lines with mode.

.na adjust - E No output line adjusting.

ceN off N=1 B,E Centerfollowing N input text lines.

5. Vertical Spacing

VvsN 16in;12pts previous Ep Vertical base line spacing/J.

IsN N=1 previous E OutputN-1 Vs after each text output line.
Sp N - N=1V B,v Space vertical distand¥ in either direction
sv N - N=1V v Save vertical distanch.

.0S - - - Output saved vertical distance.

.ns space - D Turn no-space mode on.

IS - - D Restore spacing; turn no-space mode off.

6. Line Length and Indenting

I £N 6.5in previous Em Line length.
in =N N=0 previous B,Em Indent.
ti =N - ignored B,Em Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de xx yy - YY=.. - Define or redefine macrok; end at call ofyy.
amxxyy - YY=.. - Append to a macro.
.ds xx string - ignored - Define a stringcx containingstring.

*Values separated bY;" are forNROFFand TROFFrespectively.

#Notes are explained at the end of this Summary and Index

tNo effect inNROFF

fTheuseof "~ " as control character (instead"of) suppresses the break function.

NROFHTROFF User's Manual
October 11, 1976

Notes

Explanation

Appendstring to stringxx.

Remove request, macro, or string.

Rename request, macro, or stringto yy.

Divert output to macrax.

Divert and append t&x.

Set location trap; negative is w.r.t. page bottom.
Change trap location.

Set a diversion trap.

Set an input-line count trap.

End macrois xx.

Define and set number registrauto-increment by.

Assign format to registeR (c=1, i, I, a, A).
RemoveregisterR.

Tab settingsleft type, unless=R(right), C(centered).

Tabrepetitioncharacter.
Leader repetition character.
Setfield delimitera and pad charactd.

10. Input and Output Conventions and Character Trandations

Request Initial If No
Form Value Argument
.as xx string - ignored
rm xx - ignored
N xx yy - ignored
di xx - end
.da xx - end
wh N xx - -

.ch xx N - -

dt N xx - off

At N xx - off

.em XX none none
8. Number Registers

nrRxNM - u
afRc arabic -

IT R - -

9. Tabs, Leaders, and Fields

ta Nt ... 0.8; 0.5in none
tcc none none
cc . none
fcab off off

&C C \ \

.€0 on -

dgN -;on on
Ul'N off N=1
.cuN off N=1

uf F Italic Italic
.cC C

c2¢c ’ ’

.tr abcd.... none -

mm'

omm'

Set escape character.

Turn off escape character mechanism.
Ligature mode on iN>0.

Underline (italicize inTROFP N input lines.
Continuous underline iINROFF like ul in TROFF
Underline font set té (to be switched to bul).
Set control character @

Set nobreak control characterdo

Translatea to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function
12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

13. Hyphenation.

.nh hyphenate -

hy N hyphenate hyphenate
.hec \% \%

.hw word1 ...ignored -

14. Three Part Titles.

tl “left”centerright” -

.pcc % off

Jt N 6.5in previous
15. Output Line Numbering.
mzNMS | off

.nn N - N=1

E No hyphenation.
E HyphenateN = mode.
E Hyphenation indicator character
Exceptionwords.
- Three part title.
- Page number character.
Em Length of title.
E Number mode on or off, set parameters.
E Do not number nexn lines.

NROFHTROFF User's Manual
October 11, 1976

Request Initial If No
Form Value Argument Notes Explanation

16. Conditional Acceptance of Input

if ¢ anything - - If conditionc true, accepainythingas input,
for multi-line use\{ anything\}.
if 1c anything - - If conditionc false, accepanything
if N anything u If expressionN > 0, acceptanything
if IN anything - u If expressionN < 0, acceptanything
Jif “stringl’string2” anything - If stringl identical tostring2, acceptanything
Jif 17string1’string2” anything - If stringl not identical tostring2, acceptanything
.ie ¢ anything u If portion of if-else; all above forms (likd).
. anything - - Else portion of if-else.

17. Environment Switching.
ev N N=0 previous - Environment switchedpush dowi
18. Insertions from the Standard Input

.rd prompt - prompt=BEL - Readinsertion.
X - - - Exit from NROFFTROFF
19. InputOutput File Switching
.50 filename - - Switch source fildpush down)
.nx filename end-of-file - Next file.
.pi program - - Pipe output tgrogram (NROFF only).
20. Miscellaneous
.mcc N - off Em Set margin characterand separatioil.
tmstring - newline - Print string on terminal UNIX standard message output).
igyy - YY=.. - Ignore till call ofyy.
.pmt - all - Print macro names and sizes;

if t present, print only total of sizes.
fl - - B Flush outputbuffer.

21. Output and Error Messages

Notes-

B Request normally causes a break.

D Mode or relevant parameters associated with current diversion level.

E Relevant parameters are a part of the current environment.

O Must stay in effect until logical output.

P Mode must be still or again in effect at the time of physical output.
v,p,m,u Default scale indicator; if not specified, scale indicatorsgmered

Alphabetical Request and Section Number Cross Reference

ad 4 cc 10 ds 7 fc 9 ie 16 6 nh 13 pi 19 m 7 ta 9 vs 5
af 8 ce 4 dat 7 fi. 4 if 16 Is 5 nm 15 pl 3 8 tc 9 wh 7
am 7 ch 7 ec 10 fl._ 20 ig 20 It 14 nn 15 pm 20 rs 5 i 6
as 7 cs 2 el 16 fp 2 in 6 mc 20 nr 8 pn 3 3 tt 14
bd 2 cu 10 em 7 ft 2 it 7 mk 3 ns 5 po 3 so 19 tm 20
bp 3 da 7 eo 10 hc 13 lc 9 na 4 nx 19 ps 2 sp 5 tr 10
br 4 de 7 ev 17 hw 13 lg 10 ne 3 os 5 rd 18 ss 2 uf 10
c2 10 di 7 ex 18 hy 13 li 10 nf 4 pc 14 m 7 sv 5 ul 10

NROFHTROFF User's Manual
October 11, 1976

Escape Sequences for Characters, Indicators, and Functions

Section Escape
Reference Sememe Meaning
10.1 \\ \ (to prevent or delay the interpretation\gf
10.1 \e Printable version of theurrentescape character.
2.1 \ " (acute accent); equivalent @a
2.1 \’ * (grave accent); equivalent Yma
2.1 \— — Minus sign in thecurrent font
7 \. Period (dot) (sede)
11.1 \(space) Unpaddable space-size space character
11.1 \0 Digit width space
11.1 \O Y6em narrow space character (zero widtiNROFP
11.1 \" Y12em half-narrow space character (zero widtitNROFP
4.1 \& Non-printing, zero width character
10.6 \I Transparent line indicator
10.7 \" Beginning of comment
7.3 \SN Interpolate argument<N<9
13 \% Default optional hyphenation character
2.1 \(xx Character namesix
7.1 \[X, \L{xx Interpolate string or xx
9.1 \a Non-interpreted leader character
12.3 \b’abc..” Bracket building function
4.2 \c Interrupt text processing
11.1 \d Forward (down)/2em vertical motion ¢2 line in NROFP
2.2 \E\f(xx\fN Change to font namedor xx, or positionN
11.1 \n"N "~ Local horizontal motion; move righN (negative left)
11.3 \kx Mark horizontalinput place in registek
12.4 \l 'Nc¢” Horizontal line drawing function (optionally with)
12.4 \L"Nc¢’ Vertical line drawing function (optionally with)
8 \nx,\n(xx Interpolate number registaror xx
12.1 \o'abc... Overstrike characters, b, c, ...
4.1 \p Break and spread output line
11.1 \r Reversel em vertical motion (reverse line MROFP
2.3 \sN, \stN Point-size change function
9.1 \t Non-interpreted horizontal tab
11.1 \u Reverse (up)/2em vertical motion ¢2 line in NROFP
11.1 \WN’ Local vertical motion; move dowN (negative up)
11.2 \w'string” Interpolate width oftring
5.2 X'N”’ Extra line-space functio(negative before, positive after)
12.2 \zc Print ¢ with zero width (without spacing)
16 \ Begin conditional input
16 \} End conditional input
10.7 \(newline) Concealed (ignored) newline
- \X X, any charactenot listed above

The escape sequendis\., \", \$, \(J \a, \n, \t, and\(newline) are interpreted icopy mod€g87.2).

NROFHTROFF User's Manual
October 11, 1976

Predefined General Number Registers

Section
Reference
3
11.2
7.4
7.4

11.3
15
4.1
11.2
11.2

Register
Name

Description

Current page number.

Character type (set byidth function).

Width (maximum) of last completed diversion.

Height (vertical size) of last completed diversion.

Current day of the week (1-7).

Current day of the month (1-31).

Current horizontal place anput line.

Output line number.

Current month (1-12).

Vertical position of last printed text base-line.

Depth of string below base line (generatedaligth function).
Height of string above base line (generatedMyth function).
Last two digits of current year.

Predefined Read-Only Number Registers

Section
Reference

7.3

111

111

Register
Name

NS xs<ecrbbos——S= nodb<HT>®

Description

Number of arguments available at the current macro level.
Set to 1 iNTROFF, if —a option used; always 1 iINROFF.
Available horizontal resolution in basic units.

Set to 1 INNROFF, if =T option used; always 0 ifMROFF.
Available vertical resolution in basic units.

Post-line extra line-space most recently utilized uskly .
Number oflinesread from current input file.

Current vertical place in current diversion; equahltpif no diversion.
Current font as physical quadrant (1-4).

Text base-line high-water mark on current page or diversion.
Current indent.

Current line length.

Length of text portion on previous output line.

Current page offset.

Current page length.

Current point size.

Distance to the next trap.

Equal to 1 in fill mode and 0 in nofill mode.

Current vertical line spacing.

Width of previous character.

Reserved version-dependent register.

Reserved version-dependent register.

Name of current diversion.

NROFHTROFF User's Manual
October 11, 1976

REFERENCE MANUAL

1. General Explanation

1.1.Form of input. Input consists ofext lines which are destined to be printed, interspersed wattirol lines

which set parameters or otherwise control subsequent process§iogtrol lines begin with acontrol
character—normally . (period) or ~ (acuteaccent)—followedby a one or two character name that specifies a

basic requestor the substitution of a user-definadacro in place of the control line.The control character

suppresses thiereak function—theforced outputof a partially filled line—caused by certain requestéie con-

trol character may be separated from the request/macro name by white space (spaces and/or tabs) for esthetic rea-
sons. Names must be followed by either space or newli@entrol lines with unrecognized names are ignored.

Various specialfunctionsmay be introducedanywhere in the input by means of escapecharacter, normally.

For example, the functiolnR causes the interpolation of the contents of nhieber register Rn place of the
function; hereR is eithera single character name as\inx, or left-parenthesis-introduced, two-character name as
in \n(xx.

1.2.Formatter and device resolutionTROFF internally uses 432 uniisch, corresponding to the Graphic Sys-
tems phototypesetter which has a horizontal resolution/482lnch and a vertical resolution of1#4 inch.
NROFF internally uses 240 unitsch, corresponding to the least common multiple of the horizontal and vertical
resolutions of various typewriter-likeutputdevices. TROFF rounds horizontatertical numerical parameter input

to the actual horizontakrtical resolution of the Graphic Systems typesetROFF similarly rounds numerical
input to the actual resolution of the output device indicated by Theption (default Model 37 Teletype).

1.3.Numerical parameter inputBoth NROFF and TROFF accept numerical input with the appendedleindica-
tors shown in the following table, whei®is the current type size in poing,is the current vertical line spacing
in basic units, an€ is anominal character widthn basic units.

0 Scale O ONumber of basic units O
Ondicator B Meaning UTROFF NROFF .
o i ginch 0432 0240 0
0 c¢ [OCentimeter 0 43250127 U24650127 [
o P UPica = 26 inch u72 0 2496 U
U m UeEm=spoints U&s nC O
B n En = Enm2 ESXS OC, same as Er%
o P pPoint = 72 inch 36 1124072 0
0 u OBasic unit 01 01 O
0 v OVertical line space 0V BV 0
H none Hpefault, see belowH 0 H

In NROFF, both the em and the en are taken to be equal taCtherhich is output-device dependent; common
values are/10 and 412 inch. Actual character widths INROFF need not be all the same and constructed char-
acters such as> (-) are often extra wideThe default scaling is ems ftie horizontally-orientedequestsand
functionsllI, in, ti, ta, It, po, mc, \h, and\l; Vs for the vertically-orientedequestsand functionspl, wh, ch, dt,

s, sv, ne, rt, v, \x, and\L; p for the vs request; andi for the requestsr, if, andie. All other requests ignore

any scale indicatorsWhen a number register containing an already appropriately scaled number is interpolated
to provide numericalinput, the unit scale indicatar may need to be appended to prevent an additional inap-
propriate default scaling.The numberN, may be specifiedin decimal-fraction form but the parameter finally
stored is rounded to an integer number of basic units.

NROFHTROFF User's Manual
October 11, 1976

The absolute positionindicator O may be prepended tormimberN to generate the distance to the vertical or hor-
izontal placeN. For vertically-oriented requests and function®y becomes thelistancein basic units from the
current vertical place on the page or inligersion(87.4) to the the vertical plade. For all other requests and
functions,ON becomes thelistancefrom the current horizontal place on theut line to the horizontal plachl.

For example,

Sp [03.2c
will spacein the required directiorio 3.2centimeters from the top of the page.

1.4. Numericakexpressions.Wherevemumerical input is expected an expression involving parentheses, the arith-
metic operators+, —, /, J % (mod), and the logical operatoss >, <=, >=, = (or ==), & (and),: (or) may be

used. Except where controlled by parentheses, evaluation of expressions is left-to-right; there is no operator pre-
cedence.In the case of certain requests, an initiar — is stripped and interpreted as an increment or decrement
indicator respectively. In the presence of default scaling, the desired scale indicator must be attaevedyto
number in an expression for which the desired and default scaling difterexample, if the number register
contains 2 and the current point size is 10, then

Al (4.25i+H\nxP+3y2u
will set the line length to/2 the sum of 4.25 inches2 picas+ 30 points.

1.5. Notation. Numerical parameters are indicated in tfmanualin two ways. N means that the argument may
take the formsN, +N, or —N and that the corresponding effect is to set the affected paramédetdancrement

it by N, or to decrement it byl respectively. PlailN means that an initiahlgebraicsign is not an increment
indicator, but merely the sign ™. Generally,unreasonabl@umericalinput is either ignored or truncated to a
reasonablevalue. For example,mostrequests expect to set parameters to non-negative values; exceptigms are
wh, ch, nr, andif. The requestsps, ft, po, vs, Is, Il, in, andIt restore thepreviousparameter value in the
absenceof an argument.

Single character arguments are indicated by single lower case letteomielhdlo characterargumentsare indi-
cated by a pair of lower case letteiSharacter string arguments are indicated by multi-character mnemonics.

2. Font and Character Size Control

2.1. Characterset. The TROFF character set consists of tlaphicsSystemsCommercialll charactersetplus a
Special Mathematical Font character set—each having 102 charadteesecharactersetsare shownin the
attached Tablé All ASCII characters are included, with some on the Special Pafith three exceptions, the
ASCII characters are input as themselves, andAS®IH+ characters are input in the foifxx wherexx is a two-
character name given in the attached TableThe threeASCIl exceptions are mapped as follows:

O ASCII Input O Printedoy TROFF O
Ebharacter Name Q Character Name

E ’ acute accentE ’ closequote [
O graveaccent [‘ operguote [J
H - minus H - hyphen H

The characters, °, and— may be input by \, \", and\- respectivelyor by their names (Table [I)The ASCII
characters@, #, ", ", , <, >,\,{, }, 7, 7, and_ exist only on the Special Font and are prirdse 1-em spaceif
that Font is not mounted.

NROFF understands the entirBROFF character set, but can in general print oABCII characters, additional
characters as may be available on the output device, such characters as may be able to be constructed by over-
striking or other combination, and those that can reasonably be miappether printable charactersThe exact

behavior is determined by a driving table prepared for each deVibe.characters, °, and _ print as them-

selves.

2.2. Fonts. The default mounted fonts aiflémes Roman(R), Times ltalic {), Times Bold B), and the Special
Mathematical FontS) on physical typesetter positions 1, 2, 3, and 4 respectivEtgse fonts are used in this
document. Thecurrent font, initially Roman, may be changed (among the mounted fdnyts)se of the ft
request,or by imbedding at any desired point eithbs, \f(xx, or \fN wherex and xx are the name of a mounted

-9-

NROFHTROFF User's Manual
October 11, 1976

font andN is a numerical font positionlt is not necessary to change to the Special font; characters on that font
are automatically handledA request for a named but not-mounted fonigisored TROFF can be informed that

any particular font is mounted by use of fiperequest. The list of known fontss installationdependent.In the
subsequent discussion of font-related requéstgpresents either a gtveo-character font name or the numerical
font position,1-4. The current font is available (as numerical position) in the read-only number refgister

NROFF understands font control and normally underlines Italic character§16e®).

2.3. Charactersize. Character point sizes available on the Graphic Systems typesetter are 6, 0,818, 12,

14, 16, 18, 20, 22, 24, 2&nd36. Thisis arange ofY12 inch to 22 inch. The ps request is used to change or
restorethe point size. Alternatively the point size may be changed between any two characters by imbedding a
\sN at the desired point to set teize toN, or a\stN (1<N<9) to incrementlecrement the size bY; \sO restores

the previoussize. Requested point size values that are between two valid sizes yield the larger of thEhéavo.
current size is available in theregister. NROFFignores type size control.

Request Initial If No
Form Value Argument Notes* Explanatiom

.ps N 10point previous E Point size set t&N. Alternatively imbed\sN or \stN. Any
positive size value may be requested; if invalid, ribgt larger
valid size will result, with a maximunof 36. A paired
sequence+N,-N will work because theprevious requested
value is also rememberedgnoredin NROFF

SssN 1236em ignored E Space-character size is set MB36ems. This size is the
minimum word spacing in adjusted texgnored inNROFF.

.CSFNM off - P Constantcharacterspace(width) mode is set on for forf (if
mounted); the width of every character will be taken to be
N36 ems. If M is absent, the em is that of the character’s
point size; if M is given, theem is M-points. All affected
charactersare centeredin this space, including those with an
actual width larger than this spaceSpecial Font characters
occurring while the current font B are also so treatedf N
is absent, the mode is turned offhe mode must be still or
again in effect when the charactease physically printed.
Ignored INNROFF.

bd FN off - P The characters in fonf will be artificially emboldened by
printing each one twice, separated Myl basic units.A rea-
sonable valuegfor N is 3 when the character size is in the
vicinity of 10 points. If N is missing the embolden mode
turned off. The column heads above were printed with
.bd | 3. The mode must be still or again in effect when the
characters are physically printetgnoredin NROFF

bd SFN off - P The characters in the Special Font will be emboldened when-
ever the current font i$=. This manual was printed with
.bdSB3. The mode must be still or again in effect when the
characters are physically printed.

ftF Roman previous E Font changed té. Alternatively,imbed\fF. The font name
P is reserved to mean the previous font.

foNF R,I,B,S ignored - Font position. This is a statement that a font namEdis
mounted on positiolN (1-4). It is a fatal error ifF is not
known. The phototypesetter has four fonts physically
mounted. Each font consistsof a film strip which can be

*Notes are explained at the end of the Summary and Index above.

-10 -

NROFHTROFF User's Manual
October 11, 1976

mounted on a numbered quadrant of a wheEhe default
mounting sequence assumed TROFFis R, |, B, and S on
positions 1, 2, 3 and 4.

3. Page control

Top and bottom margins aret automatically provided; it is conventional to define tmacrosand to setraps
for them at vertical position® (top) and -N (N from the bottom). See 87 and Tutorial Example§T2. A
pseudo-page transition onto tfiest page occurs either when the filseak occursor when the firshon-diverted
text processingoccurs. Arrangements for a trap to occur at the top of the first page lneustmpletedbefore
this transition. In the following, references to theurrent diversion(87.4) mean that the mechanism being
described works during both ordinary and diverted output (the former considered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is abantchies4 beginning about2¥ inch
from the left edge of the ®ich wide, continuous roll paperThe physical limitations omWNROFF output are
output-device dependent.

Request Initial If No
Form Value Argument Notes Explanation

.pl £N 11lin 11lin Y% Page length set taN. The internal limitation is about
75 inchesin TROFF and about 13@nches inNROFFE The
current page length is available in tiperegister.

.bp =N N=1 - B*,v Begin page. The currentpage is ejected and a new page is
begun. If £N is given, the new page number will b&N.
Also see requests.

.pn =N N=1 ignored - Pagenumber. The next page (when it occurs) will have the
page numbetN. A pn must occur before the initial pseudo-
page transition to effect the page numbertluf first page.
The current page number is in e register.

.po =N 0; 2627 int previous % Page offset. The currentieft marginis set toxtN. The TROFF
initial value provides about ithch of papermarginincluding
the physical typesetter margin of2¥ inch. In TROFF the
maximum (line-length)+(page-offset) is about 7.54 inches.
See§86. The current page offset is available in theegister.

.neN - N=1V Dyv Need N vertical space. If the distance,D, to the nexttrap
position (see§7.5) is less thailN, a forward vertical space of
size D occurs, which will spring the traplf there areno
remaining traps on the padg,is the distance to the bottom of
the page. If D<V, another line could still be output and
spring the trap. In a diversionD is the distance to thdiver-
sion trap if any, or is very large.

.mk R none internal D Mark the current vertical place in an internal register (both
associated with the current diversion level), or in regiRtef
given. Seet request.

It N none internal Dyv Returnupward onlyto a marked vertical place in the current
diversion. If£N (w.r.t. current place) is given, the placetl¥
from the top of the page or diversiam, if N is absent, to a
place marked by a previousk. Note that thesp request
(85.3) may be used in all cases insteadrofby spacing to the
absolute place stored in a explicit registerg.eusing the
sequencemk Rsp (AnRu.

*The useof "~ " as control character (instead'df) suppresses the break function.

tValues separated By' arefor NROFFand TROFFrespectively.

-11 -

NROFHTROFF User's Manual
October 11, 1976

4. Text Filling, Adjusting, and Centering

4.1.Filling and adjusting. Normally, words are collected from input text lines and assembled into a output text
line until some word doesn’t fitAn attempt is then made the hyphenate the word in effort to assemhbhecd

it into the output line. The spaces between the words on the output line are then increased to spread out the line
to the currentine lengthminus any currenindent A word is any string of characters delimited by tgace
character or the beginning/end of the input lieny adjacent pair of words that must be kept together (neither
split acrossoutputlines nor spread apart in the adjustment process) can be tied together by separating them with
the unpaddable spaceharacter\ " (backslash-space)The adjusted word spacings are uniformTROFF and

the minimum interword spacing can be controlled withghesquest (82).In NROFF, they are normally nonuni-

form becauseof quantizationto character-size spaces; however, the command line op#onauses uniform
spacing with full output device resolutiorfilling, adjustment,and hyphenation(§813) can all be preventedor
controlled. Thetext lengthon the last line output is available the .n register, and text base-line position on the
page for this line isn the nl register. The text base-line high-water mark (lowest place) on the current page is in
the .h register.

An input text line ending with, ?, or! is taken to be the end ofsentenceand an additional space character is
automaticallyprovidedduring filling. Multiple inter-word space characters found in the input are retained, except
for trailing spaces; initial spaces also causeeak

When filling is in effect, ap may be imbedded or attached to a word to causeeak at theend of the word
and have the resulting output lispread outo fill the current line length.

A text input line thathappens to begin with a control character can be made to not look like a control line by
prefacing it with the non-printing, zero-width filler charact&r. Still another way is to specify output transla-
tion of some convenient character into the control character trsif&j.0.5).

4.2. Interruptedtext. The copying of a input line inofill (non-fill) mode can bénterruptedby terminating the
partial line with a\c. The nextencountered input text line will be considered to be a continuation of the same
line of input text. Similarly, a word withinfilled text may be interrupted by terminating therd (andline) with

\c; the next encounteredext will be taken as a continuation of the interrupted wdfdthe intervening control

lines cause a break, any partial line will be forced out along with any partial word.

Request Initial If No

Form Value Argument Notes [Explanation

br - - B Break. The filling of the line currently being collected is
stopped and the line is output without adjustmenéxt lines
beginning with space characters and empty tiexds (blank
lines) also cause a break.

fi fill on - B,E Fill subsequent output linesThe register.u is 1 in fill mode
and 0 in nofill mode.

.nf fill on - B,E Nofill. Subsequent output lines ameitherfilled nor adjusted.
Input text lines are copied directly to output linesthout
regard for the current line length.

adc adj,both adjust E Line adjustment is begunlf fill mode is noton, adjustment

will be deferred until fill mode is back onf the typeindica-
tor c is present, the adjustment type is changed as shown in
the following table.

Lndicator O AdjustType 0
H I —adjust left margin only 0

o r padjust right margin only
o c gdcenter O
Ub orn Uadjust both margins O
Habsent H unchanged

-12 -

NROFHTROFF User's Manual
October 11, 1976

.na adjust - E Noadjust. Adjustment is turned off; the right margin will be
ragged. The adjustment type foad is not changed. Output
line filling still occurs if fill mode is on.

ceN off N=1 B,E Center the nexN input text lines within the current (line-
length minusindent). If N=0, any residual count is cleared.
A break occurs after each of tieinput lines. If the input
line is too long, it will be left adjusted.

5. Vertical Spacing

5.1. Base-linespacing. The vertical spacindV) between the base-lines of successive output linesbeaset
using thevs request with a resolution of1#4 inch=12 pointin TROFF, andto the output device resolution in
NROFF. V must be large enough to accommodate the character sizes on the affected outp&blirtes. com-
mon type sizes (9-12 points), usual typesetting practice s&tfd to 2 points greater than the point siZ&ROFF
default is 10-point type on a 12-point spacing (as in this docum@&h®. currentV is available in thev register.
Multiple-V line separation (€. double spacing) may be requested wsth

5.2. Extraline-space. If a word containsa vertically tall construct requiring the output line containing it to have
extra vertical space before amdafter it, theextra-line-spacdunction\x’'N “ can be imbedded in or attached to
that word. In this and other functions having a pair of delimiters around their parameter” fhé¢ne delimiter
choiceis arbitrary, exceptthatit can’t look like the continuation of a number expressionNor If N is negative,

the output line containing the womdill be precededby N extra vertical space; iN is positive, the output line
containing the word will be followed b extra vertical spacelf successive requests for extra space apply to
the sameline, the maximumvaluesare used. The most recently utilized post-line extra line-space is available in
the .a register.

5.3.Blocks of vertical spaceA block of vertical space is ordinarily requested ussag which honors theno-
spacemode and which does not spguasta trap. A contiguous block of vertical space may be reserved using
Sv.

Request Initial If No
Form Value Argument Notes Explanation

VsN 16in;12pts previous Ep Set vertical base-line spacing si¥e Transientextra vertical
space available witkk'N * (see above).

IsN N=1 previous E Line spacing set t&N. N-1 Vs (blank lines)are appended to
each output text lineAppended blank lines are omitted, if the
text or previous appended blank line reached a trap position.

Sp N - N=1V B,v Space vertically ineither direction. If N is negative,the
motion isbackward(upward) and is limited to the distance to
the top of the pageForward (downward) motiors truncated
to the distance to the nearest trdp.the no-spacanodeis on,
no spacing occurs (sees, andrs below).

Sv N - N=1V Y% Savea contiguous vertical block of sizd. If the distance to
the next trap is greater thad, N vertical space is output.
No-space mode hawo effect. If this distance is less thaN,
no vertical space is immediately output, Ibiis remembered
for later output (seeos). Subsequentsv requests will
overwrite any still remembered.

.0S - - - Output saved vertical spaceNo-spacemode has no effect.
Used to finally output a block ofertical spacerequestedoy
an earliersv request.

.ns space - D No-spacemodeturned on. When on, the no-space mode inhi-
bits sp requests andp requestswithout a next page number.
The no-space mode is turned off whelina of outputoccurs,
or with rs.

-13 -

NROFHTROFF User's Manual
October 11, 1976

rs space - D Restore spacingThe no-space mode is turned off.
Blank text line. - B Causes a break and output of a blank line exactlyspke.
6. Line Length and Indenting

The maximumline length for fill mode may be set with The indent may be set wiilm; an indent applicable
to only the nextoutput line may be set with. The line length includes indent space hot page offset space.
The line-length minus the indent is the basis for centering egithThe effect ofll, in, orti is delayed, if a par-
tially collectedline exists,until after that lineis output. In fill mode the length of text on an output line is less
thanor equal tothe line length minus the indent.The current line length and indent are available in registers
and.i respectively. The length otthree-part titlesproduced bytl (see814) isindependentlyset bylt.

Request Initial If No

Form Value Argument Notes Explanation

I N 6.5in previous Em Line length is set toxN. In TROFF the maximum (line-
length)+(page-offset) is about 7.54 inches.

in =N N=0 previous B,Em Indent is set tatN. The indent is prependeid eachoutput
line.

i £N - ignored B,Em Temporary indent.The nextoutput text line will be indented

a distancetN with respect to the current indenthe resulting
total indent may not be negativeélhe current indents not
changed.

7. Macros, Strings, Diversion, and Position Traps

7.1.Macros and strings.A macrois a named set of arbitratines that may be invoked by name or withrap.

A string is a named string afharacters not including a newline character, that mag interpolatedby nameat
any point. Request, macro, and string names sharesdineenamelist. Macro and string names may be one or
two characters long and may usurp previously defined request, macro, or string Aaiyed.these entities may
be renamed witlin or removed withrm. Macros are created lge anddi, and appended to lgm andda; di
andda cause normal output to be stored in a madstringsare createdby ds and appended to bys. A macro

is invoked in the same way as a request; a control line beginningill interpolatethe contents of macrax
The remainder of the line may contain up to ranguments Thestringsx andxx are interpolated at any desired
point with \[k and\[{xx respectively. String references and macro invocations may be nested.

7.2.Copy mode input interpretationDuring the definition and extension of strings and macros (not by diversion)
the input is read iwopy mode The input is copied without interpretatiexceptthat:

- The contents of number registers indicatedrbgre interpolated.

- Strings indicated by{Jare interpolated.

- Arguments indicated b\& are interpolated.

- Concealed newlines indicated kipewline) are eliminated.

- Comments indicated by areeliminated.

-\t and\a are interpreted a&SCIl horizontal tab an&OH respectively (89).
-\ is interpreted a&

- \. is interpreted a&.".

These interpretations can be suppressed by prependingc@ example, sinc& maps intoa\, \\n will copy as
\n which will be interpreted as a number register indicator when the macro or string is reread.

7.3. Arguments.When a macro is invoked by name, the remainder of the line is tal@mtainup to nine argu-

ments. The argument separator is the space character, and arguments may be surrounded by double-quotes to
permit imbeddedspacecharacters. Pairs of double-quotes may be imbedded in double-quoted arguments to
represent a single double-quoti.the desiredarguments won't fit on a line, a concealed newline may be used to
continue on the next line.

When a macro is invoked th&put levelis pushed dowrand any arguments available at the previous level
becomeunavailableuntil the macro is completely read and the previous level is restéeamacro’s own argu-
ments can be interpolated aty point within the macro with$N, which interpolates thBlth argument (&N<9).

-14 -

NROFHTROFF User's Manual
October 11, 1976

If an invoked argument doesn’t exist, a null string resulter example, the macpeox may be defined by

.de xx \"begin definition
Today is\\$1 the \\$2.
\"end definition

and called by
XX Monday 14th
to produce the text
Today is Monday the 14th.

Note that thea$ was concealed in the definition with a prepended@he number oturrently availablearguments
is in the.$ register.

No argumentsare available at the top (non-macro) level in this implementat®ecause string referencing is
implemented as a input-level push down, no arguments are availablentbim a string. No arguments are
available within a trap-invoked macro.

Arguments are copied inopy modeonto a stack where they are available for referentee mechanismdoes
not allow an argument to contain a direct referenceltm@string (interpolated at copy time) and it is advisable
to conceal string references (with an exXfrao delay interpolation until argument reference time.

7.4. Diversions. Processedutput may be divertedinto a macro for purposes such as footnote processing (see
Tutorial 8T5) or determiningthe horizontaland vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical posifidre numberregistersdn and dl
respectively contain the vertical and horizontal size of the most recently ended divétsimessedext thatis
diverted into a macro retains the vertical size of eafchs lines when rereadin nofill mode regardless of the
currentV. Constant-space(ts) or emboldenedbd) text that is diverted can be reread correctly only if these
modesare again or still in effect at reread timéne way to do this is to imbed in the diversion the appropriate
cs or bd requests with théransparentmechanism described §L.0.6.

Diversionsmay be nested and certain parameters and registers are associated with the current diversion level (the
top non-diversionlevel may be thought of as the Oth diversion levdlhese are the diversion trap and associated
macro, no-space mode, the internally-saved marked placenfs@mdrt), the current vertical placed(register),

the current high-water text base-link (egister), and the current diversion nanzerégister).

7.5. Traps. Threetypes oftrap mechanismsare available—page traps, a diversion trap, and an input-line-count
trap. Macro-invocation traps may be planted usimg at any page position including the tofphis trap position
may be changed usinch. Trap positionsat or below the bottom of the page have no effect unless or until
moved to within the page or rendered effective by an increase in page |dvgthtraps may be planted at the
sameposition only by first planting them at different positions and then moving one of the trafisstthianted

trap will conceal the second unless and until the first omeoiged (seeTutorial Examples8T5). If the first one

is moved back, it again concealsthe second trap. The macro associated with a page trap is automatically
invoked when a line of text is output whose vertical se@chesor sweeps pashe trap position.Reachingthe
bottom of a page springs the top-of-page trap, if any, provided ihaneext page. The distanceto the nexttrap
position is available in the register; if there are no traps between the current position and the bottom of the
page, the distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted dsinghe .t register works in a
diversion; if there is no subsequent trafaae distanceis returned. For a description of input-line-count traps,
seeit below.

Request Initial If No
Form Value Argument Notes [Explanation
.de xx yy - YY=.. - Define or redefine the macoox. The contents of the macro

begin on the next input line. Input lines are copied icopy
mode until the definition is terminated bg line beginning
with .yy, whereupon the macrgy is called. In the absence of
yy, the definition is terminated by a line beginning with.

- 15 -

NROFHTROFF User's Manual
October 11, 1976

A macro may contairde requests provided the terminating
macrosdiffer or the contained definition terminator is con-

cealed. ".." can be concealed &s. which will copy as\.. and
be reread a%..".

amxxyy - YY=.. - Append to macro (append versionds).

ignored - Define a string xx containingstring. Any initial double-quote
in string is stripped off to permit initial blanks.

.ds xx string

.as xx string ignored - Appendstring to stringxx (append version afls).

rm xx - ignored - Remove request, macro, or stringhe namexx is removed
from the name list and any related storage space is freed.
Subsequent references will have no effect.

n xxyy - ignored - Rename request, macro, string xx to yy. If yy exists, it is
first removed.

di xx - end D Divert output to macraxx. Normal text processing occurs dur-
ing diversion except that page offsettimg not done. The
diversion ends when the requesti or da is encountered
without an argument; extraneous requests of this type should
not appear when nested diversions are being used.

.da xx - end D Divert, appending tax (append version afi).

wh N xx - - % Install a trap toinvoke xx at page positiorN; a negative N
will be interpreted with respect tthe page bottom Any
macro previously planted af is replaced byxx A zeroN
refers to thetop of a page. In the absenceof xx the first
found trap atN, if any, is removed.

.ch xx N - - v Change the trap position for macwto beN. In the absence
of N, the trap, if any, is removed.

dt N xx - off Dyv Install a diversion trap at positiddin the currentdiversion to
invoke macroxx. Anotherdt will redefine thediversiontrap.
If no arguments are given, the diversion trap is removed.

dt N xx - off E Set an input-line-count trap to invoke the masroafter N
lines of text input have been read (controt requestlines
don’t count). The text may be in-line text or text interpolated
by inline or trap-invoked macros.

.em Xx none none - The macroxx will be invoked when alinput hasended. The
effect is the same as if the contentsxethad been at the end
of the last file processed.

8. Number Registers

A variety of parameters are available to the usgsradefinednamednumber registergsee Summary and Index,
page7). In addition, the user may define his own named registRegister names are ome two characters

long anddo notconflict with request, macro, or string namdsxcept for certain predefined read-only registers, a
number register can be read, written, automatically incrementéddcoementedand interpolatedinto the inputin

a variety of formats. One commonuseof user-defined registers is to automatically number sections, paragraphs,
lines, etc. A number register may be used any time numerical input is expected or desired ahd usaglin
numericalexpressiong81.4).

Numberregisters are created and modified usimg which specifies the name, numerical value, and the auto-
incrementsize. Registers are also modified, if accessed with an auto-incrementing sequietioe registersx
andxx both containN and have the auto-increment side the following access sequences have the effect shown:

-16 -

NROFHTROFF User's Manual
October 11, 1976

0 O Effect on O Value 0
(Sequence! Register U Interpolate%
anx E none E N O
On(xx O none O N O
On+x kincremented b O N+M 0
Hn—x Ok decremented bt 5 N-M O
§n+(xx E&xincremented by E N+M B

n—(xx xxdecremented bl 7 N-M 0

When interpolated, a number register is converted to decimal (default), decimal with leading zeros, lower-case
Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case satplatigticaccordingto the
format specified baf.

Request Initial If No
Form Value Argument Notes Explanation
NnrRxNM - u The numberregisterR is assigned the valueN with respect to the pre-
vious value, if any. The increment for auto-incrementing is
set toM.
afRc arabic - - Assignformat c to registerR. The available formats are:
O O Numbering O
Hrormat U Sequence E
01 [012345,.. 0
0 001 [000,001,002,003,004,005,... O
I L0, i,ii,jii,iv,v,... U
g L DoLiniv,v,... g
o a ,a,b,c,...,z,aa,ab,...,zz,aaa,... 0
0 A [0ABC,. . ZAAAB,. ZZAAA,..
An arabic format having\ digits specifiesa field width ofN
digits (example 2 above).The read-only registerand the
width function (811.2) are always arabic.
Ir R - ignored - Remove register R. If many registers are being created

dynamically, it may become necessary to remove no longer
used registers to recapture internal storage spaceewer
registers.

9. Tabs, Leaders, and Fields

9.1.Tabs and leaders.The ASCII horizontaltab character and theSCIil SOH (hereafter known as thieader
character)canboth be usedto generate either horizontal motion or a string of repeated charagteedength of

the generated entity is governed by intetiadl stopsspecifiable withta. The default difference is that tabs gen-
erate motion and leaders generate a string of periodmd Ic offer the choice of repeatatharacteror motion.
There are three types of internal tab stofestadjusting,right adjusting, andccentering In the following table:

D is the distance from the current position the input line (where a tab or leader was found) to the next tab
stop; next-stringconsists of the input characters following the tab (or leader) up to the next fehder)or end

of line; andW is the width ofnext-string

O Tab Clength of motion ord Location of O
U type Urepeategharacterst next-string E
E Left E D H:ollowingD 0
0O Right 0O D-W [Right adjusted withirD 0
HCenteredH D-W2 HCentered on right end &@ H

-17 -

NROFHTROFF User's Manual
October 11, 1976

The length of generated motion is allowed to be negative, but that of a repeated charactearstringe.
Repeated character strings contain an integer number of characters, and any desahe®is prependedas
motion. Tabs or leaders found after the last tab stop are ignored, but may be umssttstsngterminators.

Tabs and leaders are not interpreteccapy mode \t and\a always generate a non-interpreted tab and leader
respectively, and are equivalent to actual tabs and leadeapynmode

9.2. Fields. A field is contained betweenpair of field delimitercharacters, and consists of sub-strings separated
by paddingindicator characters.The field length is the distance on timput line from the position wheréhe

field begins to the next tab stoplhe difference between the total length of all the sub-strings anfietde
lengthis incorporated as horizontal padding space that is divided among the indicated paddingTiadesor-
poratedpadding is allowed to be negativ&or example, if the field delimiter #& and the padding indicator s
#xxXright# specifies a right-adjusted string with the stnogscentered in the remaining space.

Request Initial If No

Form Value Argument Notes Explanation

taNt.. 0.8; 0.5in none Em Set tab stops and type$=R, right adjusting;t=C, centering;
t absent, left adjusting.TROFF tab stops are preset every
0.5in.; NROFF every 0.8in. The stop values are separated by
spaces, and a value preceded+bis treated as an increment
to the previous stop value.

tcc none none E The tab repetition charactbecomesc, or is removed specify-
ing motion.

cc . none E The leader repetition character beconwsor is removed
specifying motion.

fcab off off - The field delimiter is set ta; the padding indicator is set to

the spacecharacter or td, if given. In the absence of argu-
ments the field mechanism is turned off.

10. Input and Output Conventions and Character Trandations

10.1.Input character translations.Ways of inputting the graphic character set wdigcussedin 82.1. The
ASCII control characters horizontal tab (89.8DH (89.1), and backspace (810.3) are discussed elsewfibee.
newline delimits input lines.In addition,STX, ETX, ENQ, ACK, andBEL are acceptedand may be used as del-
imiters or translated into a graphic with (810.5). All others are ignored.

The escapecharacteh introducesescape sequencesauses the following character to mean another character, or
to indicate some functionA complete list of such sequences is given in the Summary and Index on page 6.
should not be confused with tCll control characteESC of the same nameThe escapecharacten can be
input with the sequenca\. The escape character can be changed edtland all that haseensaid aboutthe
default\ becomes true for the new escape charadecan be used to print whatever the current escapeacter

is. If necessary or convenient, the escape mechanism may be turned cdbvatid restored witlec.

Request Initial If No

Form Value Argument Notes [Explanation

£CccC \ \ - Set escape character\foor to ¢, if given.
€0 on - - Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the curr@®OFF character set —i, fl, ff, ffi, andffl. Theymay
be input (even iNROFP by \(fi, \(fl, \(ff, \(Fi, and \(FI respectively. The ligature mode is normally on in
TROFF, andautomaticallyinvokes ligatures during input.

Request Initial If No
Form Value Argument Notes Explanation
dgN off; on on - Ligature mode is turned on N is absent or non-zero, and

turned off ifN=0. If N=2, only the two-character ligaturase
automaticallyinvoked. Ligature mode is inhibited for request,

-18 -

NROFHTROFF User's Manual
October 11, 1976

macro, string, register, or filkames,and in copy mode No
effect INNROFF

10.3.Backspacing, underlining, overstriking, ettinless incopy modgethe ASCII backspace character is replaced
by a backward horizontal motion having the width of the space charddteterlining as a fornof line-drawing
is discussedn 812.4. A generalized overstriking function is describedsii®2.1.

NROFF automatically underlines charactensthe underlinefont, specifiable withruf, normally that on font posi-
tion 2 (normally Times ltalic, se€2.2). In addition toft and\fF, the underline font may be selected Wyand
cu. Underlining is restricted to an output-device-dependent subsetasbnablecharacters.

Request Initial If No
Form Value Argument Notes Explanation

Ul N off N=1 E Underlinein NROFF (italicize in TROFP the next N input text
lines. Actually, switch tounderline font, saving the current
font for later restorationpther font changes within the span of
a ul will take effect, but the restoration will undo the last
change. Output generated byl (§14) is affected by the font
change, but doermot decrementN. If N>1, there is the risk
that a trap interpolated macro mayovide text lines within
the span; environment switching can prevent this.

.cu N off N=1 E A variant oful that causegverycharacterto be underlined in
NROFF. Identicalto ul in TROFFE

uf F Italic Italic - Underline font set td-. In NROFF, F may not be on position
1 (initially Times Roman).

10.4. Controlcharacters. Both the control characterand theno-breakcontrol character may be changed, if
desired. Such a change must be compatible with the design of any macros used in the theechafige,and
particularly of any trap-invoked macros.

Request Initial If No

Form Value Argument Notes [Explanation

.ccc . . E The basic control character is sefcfoor reset td'.".
.c2c . ’ E The nobreakcontrol character is set t or reset td"".

10.5. Outputtranslation. Onecharactercanbe made a stand-in for another character ugingAll text process-
ing (e. g. charactercomparisons}akesplacewith the input (stand-in) character which appears to have the width
of thefinal character. The graphic translation occurs at the moment of output (including diversion).

Request Initial If No
Form Value Argument Notes Explanation
.tr abcd.... none - O Translatea into b, ¢ into d, etc. If an odd number of charac-

tersis given, the last one will be mapped into the space char-
acter. To be consistent, a particular translation must stay in
effect frominput to outputtime.

10.6. Transparenthroughput. An input line beginning with & is readin copy modeand transparentlyoutput
(without the initial\!); the text processor is otherwise unaware of the line’'s presefbés mechanism may be
used to pass control information to a post-processor or to imbed control lines in a macro created by a diversion.

10.7.Comments and concealed newlinés uncomfortablylong input line that must stay one line (e. g. a string
definition, or nofilled text) can be split into many physical lines by ending all buashene with the escapé.
The sequenc&newline) is alwaysignored—except in a commenComments may be imbedded at #ed of
any line by prefacingthemwith \". The newline at the end of a comment cannot be concedleihe begin-
ning with \" will appear as a blank line and behave lige 1; a comment can be on a libg itself by beginning
the line with.\".

-19 -

NROFHTROFF User's Manual
October 11, 1976

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. LocalMotions. The functions\v’'N”~ and\h"N”" can be used fdiocal vertical and horizontal motion respec-
tively. ThedistanceN may be negative; thpositivedirections areaightward anddownward A local motion is
one containedvithin aline. To avoid unexpected vertical dislocations, it is necessary thatetheertical local
motion within a word in filled text and otherwise within a line balance to z@&itte aboveand certain other
escape sequences providing local motion are summarized in the following table.

O Vertical 0O Effect in [Horizontal O Effect in 0
H ocal Motion I TROFF NROFF M ocal Motion I TROFF NROFF E
O WN’ [(Move distanceN M \h'N~ [Move distanceN g
B L % \(space) npaddable space-size spac%
0\ %/2 em up %/z I@ne up g \0 igit-size space 0
o \d 7> em down ¥ line down [n 5 0
o v (emup lineup M \O (/6 em space rignored [
0 0 g m \ (/12 em space E’gnored g
0 0 0 Il 0]

As an exampleEZ2 could be generated by the sequeBte-2\v'—0.4m 2\v'0.4m"\s+2; it should be noted in this
example that the 0.4 em vertical motions are at the smaller size.

11.2. WidthFunction. The width function \w’string” generates the numerical width sfring (in basic units).
Size and font changes may be safely imbeddestring, and will not affect the current environmerfor exam-
ple, .ti —\Ww’1. “u could be used to temporarily indent leftward a distance equal to the size of thé ktting

The width function also sets three number registdise registersst and sb are set respectively to the highest
and lowest extent oftring relative to the baseline; then, for example, the tdtaight of the string is
\n(stu—\n(sbu. In TROFFthe number registeat is set to a value betweena@d3: 0 means that all of the char-
acters instring were short lower case characters without descenderseflike means that at least one character
has a descendélike y); 2 means that at least one character is tall fHkeand 3 means that both tall characters
and characters with descenders are present.

11.3.Mark horizontal place.The escapsequenceékx will cause thecurrent horizontal position in thénput line
to be stored in registet. As an example, the constructidkxword\h” C\nxu+2u”word will emboldenword by
backing up to almost its beginning and overprinting it, resultingard.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to niabaractersis provided by the overstrike
function\o’string”. The characters istring overprintedwith centersaligned;the total width is that of the widest
character. string shouldnot contain local vertical motion As examples\o'e\”” producesg, and\o’\(mo\(sl” pro-
duces.

12.2. Zero-widthcharacters. The function\zc will output ¢ without spacing over it, and can be used to produce
left-aligned overstruck combinationsAs examples\z\(ci\(pl will produce&) and\(br\z\(rn\(ul\(br will produce
the smallest possible constructed ox

12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(00000D00D0DO00) that can be combined into various bracket styl€be function \b“string” may be used

to pile up vertically the characters string (the first character on top and thaest at the bottom); the characters
are vertically separated by eIn and the total pile is centered/2em above the current baselitelife in

NROFP. Forexample\b” \(Ic\(If ' E\C\b” \(rc\(rf” X" —0.5m" \x"0.5m" producesaz %

12.4. Linedrawing. The function\|"Nc” will draw a string of repeated’s towards the right for aistanceN.

(\I is \(lower case L).If c looks like a continuation of an expression kyrit may insulated fronN with a\&.

If ¢ is not specified,the _ (baseline rule) is used (underline characteNROFR. If N is negative, a backward
horizontal motion of sizéN is madebeforedrawingthe string. Any space resulting froml/size ofc) having a
remainderis put at the beginning (left end) of the stringn the case of characters that are designed to be con-
nected such as baseline-ruleunderrule_, and root-en , the remainder space is covered by over-lappifig\

- 20 -

NROFHTROFF User's Manual
October 11, 1976

is lessthan the width of, a singlec is centered on a distanbé As an example, a macro to underscore a string
can be written

.de us
WS\ 7 Oo\(ul”

or one to draw a box around a string

.de bx
\(br\ WS\ C\(br\ I~ OO\(rn"\ 1~ CO\(ul

such that

.ul "underlined words"
and

.bx "wordsin a box"

The function\L” Nc” will draw a vertical line consisting of the (optional) charactstacked vertically aparteim

(1 line in NROFP, with the first two characters overlapped, if necessary, to éocontinuousline. The default
character is thdox rule O(\(br); the other suitable character is theld vertical O (\(bv). The line is begun
without any initial motion relative to the current base lire.positive N specifies a line drawn downward and a
negativeN specifies a line drawn upwardifter the line is drawmo compensating motions are madee instan-
taneous baseline is at teadof the line.

Ohe horizontal and vertical line drawing functions may be used in combintatiproducelarge boxes. The

will draw a box around some text whose beginning vertical place was saved in number gegstgr usin
Eimk a) as done for this paragraph.

ero-widthbox-rule and the¥.-em wideunderrulewere designedo form corners when using 1-em vertical spdc-
gs. For example the macro E
g .deeb 0
E S -1 \"compensate for next automatic base-line spacing g
0 .nf \"avoid possibly overflowing word buffer E
0 \h"=.5n"\L" D\nau—2\I"\n(.Ju+1n\(ul"\L "= D\\nau+1"\I" OOu—.5n\(ul” \"draw box 0
0 fi 0
U O
U 0
9
O

13. Hyphenation.

The automatic hyphenation may be switched off and\dinen switched on witly, several variants malye set.
A hyphenation indicatocharacter may be imbedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenatiém.addition, the user may specify a small exception word list.

Only wordsthat consistof a central alphabetic string surrounded by (usually null) non-alphabetic strings are con-
sideredcandidatesfor automatichyphenation. Words that were input containing hyphens (minus), em-dashes
(\(em), or hyphenation indicator characters—such as mother-in-law-alar@ys subject to splitting after those
characters, whether or not automatic hyphenation is on or off.

Request Initial If No

Form Value Argument Notes Explanation

.nh hyphenate - E Automatic hyphenation is turned off.

hyN onN=1 onN=1 E Automatic hyphenation is turned on fb=1, or off for N=0.

If N=2, last lines (ones that will cause a trap) are not
hyphenated. FoN=4 and 8, the last and first twaharacters
respectively of a word are not split off’hese values are addi-
tive; i. e.N=14 will invoke all three restrictions.

-21 -

NROFHTROFF User's Manual
October 11, 1976

.hcce \% \% E Hyphenation indicator character $&t toc or to the default
\%. The indicator does not appear in the output.

.hw word1 ...ignored - Specify hyphenation points in words with imbedded minus sigusr-
sions of a word with terminak are implied; i.e. dig—it
implies dig—its. This list is examined initiallyand after each
suffix stripping. The space available is small—about 128
characters.

14. Three Part Titles.

The titling functiontl provides for automatic placement of three fields at the left, center, and right of a line with
a title-length specifiable wittt. tl may be used anywhere, and is independent of the normal text collecting pro-
cess. A common use is in header and footer macros.

Request Initial If No
Form Value Argument Notes Explanation

tl “left”centerright” - - The stringsleft, center andright are respectively left-adjusted,
centeredand right-adjusted in the current title-lengtAny of
the strings may be empty, aonglerlappingis permitted. If the
page-number character (initial%) is found within any of the
fields it is replaced by the current page number having the for-
mat assigned to registés. Any character may be used as the
string delimiter.

.pcc % off - The page number character is setctoor removed. The
page-number register remai¥s.

Jt N 6.5in previous Em Length of titleset to£N. The line-length and the title-length
are independent Indents do not apply to titles; page-offsets
do.

15. Output Line Numbering.

Automatic sequencenumberingof output lines may be requested witm. When in effect, a three-digit,
arabic numberplus a digit-space is prepended to output text lindhe text lines are thus offset by four

3 digit-spaces, and otherwise retain their line length; a reduction in line length may be desiesgp tioe
right marginalignedwith an earliermargin. Blank lines, other vertical spaces, and lines generated are
not numbered. Numbering can be temporarily suspended with or with an.nm followed by a later

6 .nm +0. In addition, a line number indemt and the number-text separati®mmay be specified in digit-
spaces.Further,it canbe specified that only those line numbers that are multiples of some nikhdrerto
be printed (the others will appear as blank number fields).

Request Initial If No
Form Value Argument Notes Explanation

MmN MS | off E Line number mode.If £N is given, line numbering is turned
on, and the next output line numbered is numbetdd
Default values areM=1, S=1, and I=0. Parameters
corresponding to missing arguments are unaffectediora
numeric argument is considered missirig.the absence dll
arguments,numberingis turned off; the next line number is
preserved for possible further use in number register

.nn N - N=1 E The nextN text output lines are not numbered.

9 As an example, the paragraph portions of this sea@iemumberedwith M= 3: .nm 1 3 was placed at the
beginning;.nm was placed at the end of the first paragraph; .amd+0 was placed in front of this para-
graph; andnm finally placed at the endLine lengths were also changed (foy 0000"u) to keep the right

12 side aligned. Another example isnm +5 5 x 3 which turns on numbering with the line numiaérthe next
line to be 5 greater than the last numbered line, With5, with spacingS untouchedand with the indent

-22 -

NROFHTROFF User's Manual
October 11, 1976

set to 3.
16. Conditional Acceptance of Input

In the following, c is a one-character, built-isondition name,! signifies not, N is a numerical expression,
stringl and string2 are strings delimited by any non-blank, non-numeric characten the strings, ananything
represents what is conditionally accepted.

Request Initial If No
Form Value Argument Notes Explanation
if ¢ anything - - If conditionc true, accepainythingas input; in multi-line case
use\{anything\}.
if 1c anything - - If conditionc false, accepanything
if N anything u If expressionN > 0, acceptanything
if IN anything - u If expressionN < 0, acceptanything
Jif “stringl’string2” anything - If stringl identical tostring2, acceptanything
Jif 1”string1’string2” anything - If stringl not identical tostring2, acceptanything
.ie ¢ anything u If portion of if-else; all above forms (likd).
. anything - - Else portion of if-else.
The built-in condition names are:
[Condition U O
E Name g Truelf E
E 0 Epurrent page number is odd
o e [Current page number is evemn]
o t LFormatter iSTROFF U
E n H:ormatter iISNROFF E

If the conditionc is true, or if the numbelN is greater than zero, or if the stringsmpareidentically (including
motions and character size and forathythingis accepted as inputlf a ! precedes the condition, number, or
string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and lleginningof anythingare skipped over.The anythingcan be either a
single input line (text, macro, or whatever) or a number of input likeshe multi-linecase,the first line must
begin with a left delimitek{ and the last line must end with a right delimifer

The requestie (if-else) is identical toif except that the acceptance state is remembefedubsequent and
matchingel (else) request then uses the reverse sense of that igtatel. pairs may be nested.

Some examples are:
if e .tl "Even Page %"’
which outputs a title if the page number is even; and

ie\n%>1\{\
“sp 0.5i

tl "Page %"’
‘sp 01.2i \}
€l .sp 02.5i

which treats page 1 differently from other pages.
17. Environment Switching.

A number of the parameters that control the text processing are gathered togetheemtwmonmentwhich can
be switchedby the user. The environment parameters are those associated with requests noting E Mothsir
column; in addition, partially collected lines and words are in the environmEwerything else is global;

- 23 -

NROFHTROFF User's Manual
October 11, 1976

examples are page-oriented parameters, diversion-oriented parameters, number registers, and macro and string
definitions. All environments are initialized with default parameter values.

Request Initial If No
Form Value Argument Notes [Explanation
ev N N=0 previous - Environment switched to environmenkNk2. Switchingis

done in push-down fashion so that restoring a previous
environmentmustbe donewith .ev rather than specific refer-
ence.

18. Insertions from the Standard Input

The input can be temporarily switched to #hstemstandard inputwith rd, which will switch back wherwo
newlines in a row are found (thextra blank line is not used). This mechanism is intended for insertions in
form-letter-like documentationOn UNIX, thestandard inputcan be the user's keyboardpipe or afile.

Request Initial If No

Form Value Argument Notes [Explanation

.rd prompt - prompt=BEL - Readinsertionfrom the standard input until two newlines in a
row are found. If the standard input is the user’'s keyboard,
prompt (or a BEL) is written ontothe user’s terminal. rd
behaveslike a macro, and arguments may be placed after
prompt

X - - - Exit from NROFFTROFFE Text processing is terminated

exactly as if all input had ended.

If insertions are to be taken from the terminal keyboahile output is being printed on therminal, the com-
mand line option-g will turn off the echoing of keyboard input and prompt only vBtL. The regular input
and insertion inputannotsimultaneously come from the standard input.

As an example,multiple copiesof a form letter may be prepared by entering the insertions for all the copies in
onefile to be used as the standard input, and causing the file containing the letter to reinvoke itselk using
(819); the process would ultimately be ended byaim the insertion file.

19. Input/Output File Switching

Request Initial If No

Form Value Argument Notes [Explanation

.s0 filename - - Switch source file. The top input (file reading) level is
switched tofilename The effect of anso encountered in a
macro is not felt until the input leveéturnsto the file level.
When the new file ends, input is again taken from the original
file. so's may be nested.

.nx filename end-of-file - Next file isfilename The current file is considered ended, and
the input is immediately switched filename

.pi program - - Pipe output toprogram (NROFF only). This request must

occur before any printing occurs. No arguments are transmit-
ted toprogram

20. Miscellaneous

Request Initial If No
Form Value Argument Notes Explanation
.mcc N - off Em Specifies that anargin characterc appear a distanch to the [

right of the right margin after eacton-emptytext line (except [
those produced byl). If the output line is too-long (as carl]
happenin nofill mode) the character will be appended to the

24 -

NROFHTROFF User's Manual
October 11, 1976

tmstring - newline
igyy - YY=..
pmt - all

21. Output and Error Messages.

line. If N is not given, the previoud is used; the initiaN is [
0.2 inchesin NROFF and lem in TROFF The margin charac- [
ter used with this paragraph was a 12-point box-rule. 0

After skipping initial blanksstring (rest of the line) is read in
copy modeand written on the user’s terminal.

Ignore input lines.ig behaves exactly likde (87) except that
the input is discarded.The input is read ircopy modge and
any auto-incremented registers will be affected.

Print macros. The names and sizes of alfl the definedmac-
ros and strings are printed on the user’s terminaljsfgiven,
only the total of the sizes is printedlhe sizesis given in
blocksof 128 characters.

Flush output buffer. Used in interactive debugging to force
output.

The output fromtm, pm, and the prompt fronnd, as well as variougrror messages are writteonto UNIX'’s
standard messageutput. The latter is different from thetandard outpytwhereNROFF formatted output goes.
By default, both are written onto the user’s terminal, but they can be independently redirected.

Various error conditions may occur during the operationN#OFF and TROFF. Certain less serious errors hav-
ing only local impact do not cause processing to termina@teo examplesare word overflow caused by a word
that is too large to fit into the word buffer (in fill mode), dimé overflow causedby an output line that grew
too large to fit in the line buffer; in both cases, a message is prthed{fending excessis discardedand the
affected word or line is marked at the point of truncation withim NROFFand a=» in TROFFE The philosophy

is to continue processing, if possible, on the grounds that output useful for debuggirme praguced. If a
Serious error occurs, processing terminates, anappropriatemessageés printed. Examplesare the inability to
create, read, or write files, and the exceeding of certain internal limitenghatfuture outputunlikely to be use-

ful.

- 25 -

NROFHTROFF User's Manual
October 11, 1976

TUTORIAL EXAMPLES

T1.

Although NROFF and TROFF have by design a syntax
reminiscent of earlier text processors* with the intent
of easing their use, it is almost alwagscessaryo
prepareat leasta small set of macro definitions to
describe most documentsSuch common formatting
needs as page margins afadtnotesare deliberately
not built into NROFF and TROFF. Instead, the macro
and string definition, number register, diversion,

Introduction

becausesomepart or whole word didn’t fit on it. If
anything in the footer and headiat follows causes
a break that word or part word will be forceaut. In
this and other examples, requests lie and sp that
normally cause breaks are invokesing the no-break
control character © to avoid this. When the
headefooter design contains materiatequiring
independent text processing, thevironmentmay be
switched,avoiding most interaction with the running

environment switching, page-position trap, and condi- ext.
tional input mechanisms provide the basis for user-A more realistic example would be

defined implementations. de hd \"header

The examples to be discussed are intended to be use-

Aft .t " \(rn”\(rn” \"troff cut mark

ful and somewhat realistic, but won't necessarily
cover all relevant contingenciesExplicit numerical

parameters are used in the examples to make them

easierto read and to illustrate typical valuedn
many cases, number registers worddlly be usedto
reduce the number of placeghere numerical infor-
mationis kept, and to concentrate conditional parame-
ter initialization like that which depends on whether
TROFFor NROFFis being used.

T2. Page Margins

As discussed in83, header and footer macros are
usually defined to describe the tapd bottom page

margin areasrespectively. A trap is planted at page
position 0 for the header, aad—N (N from the page
bottom) forthe footer. The simplest such definitions
might be

.de hd \"define header
“sp 1i

. \"end definition
.defo \"define footer
“bp

. \"end definition
.wh 0 hd

.wh —1i fo

which provide blank inch top andbottom margins.
The header will occur on théirst page, only if the
definition and trap exist prior to the initial pseudo-
pagetransition(83). In fill mode, the outputine that
springs the footer trap was typicalljorced out

*For example: P. A. Crisman,Ed., The Compatible Time-Sharing
System, MIT Press, 1965, SectioAH9.01 (Description of
RUNOFF program on MIT’s CTSS system).

- 26 -

if Wn%>1 \{\

“sp 00.5i—-1 \"tl base at 0.5i

tl "= % - \"centered page number
.ps \"restore size

ft \"restore font

vs \} \"restore vs

“sp 1.0 \"space to 1.0i

.ns \"turn on no-space mode
defo \"footer

.ps 10 \"set footer/header size
ftR \"set font

vs 12p \"set base-line spacing

Af \n% =1 \{\
“sp [\n(.pu—0.5i—1 \"tl base 0.5i up
tl 7= % - \} \"first page number

o
wh 0 hd
.wh —1i fo

which setsthe size, font, and base-line spacing for the
headefooter material, and ultimately restores them.
The material in this case is a page number abtte
tom of the first page and at the top of the remaining
pages. IfTROFFis used, acut markis drawn in the
form of root-eris at each margin.The sp’s refer to
absolute positions to avoid dependence on the base-
line spacing. Another reason for this ithe footer is
that the footer is invoked by printing a line whose
vertical spacing swept past the trap positionpbgsi-

bly as much as the base-line spacinhe no-space
mode is turned on at the end lad to render ineffec-
tive accidental occurrences §f at the top othe run-
ning text.

NROFHTROFF User's Manual
October 11, 1976

The above method of restoring size, font, etc. presup-A macro to automatically number section headings

poses that such requests (that m&tviousvalue) are
not used in the running textA better scheme is save
and restore both theurrentand previous values as
shown for size in the following:

defo
.nr s1\\n(.s \"current size
.ps
.nr s2\\n(.s \"previous size
\"rest of footer
.de hd
R \"header stuff
ps\\n(s2 \"restore previous size
\"restore current size

ps\\n(sl

Page numbers may be printed in thettom margin

might look like:
de sc \"section
.- \"for ce font, etc.
S 0.4 \"prespace
.ne 2.4+\\n(.Vu \"want 2.4+ lines
fi
\\n+S.
.nrsol \"init S

The usage issc, followed by the sectioheadingtext,
followed by .pg. Thene test value includes one line
of heading, 0.4 line in théollowing pg, and one line

of the paragraphtext. A word consisting of the next
sectionnumber and a period is produced to begin the
headingline. The format of the number may be set
by af (88).

by a separate macro triggered during the footer's Pa%8nother common form is the labeled, indented para-

ejection:
.de bn \"bottom number
tl =% - \"centered page number

wh —0.5i—1v bn \"tl base 0.5i up

T3. Paragraphs and Headings
The housekeepingassociated with starting a new

graph, where the label protrudes left into the indent
space.

delp \"labeled paragraph
-Pg

in 0.5i \"paragraph indent
ta 0.2i 0.5 \"label, paragraph
10

\t\$1\t\c \"flow into paragraph

paragraph should be collected in a paragraph macro

that, for example, does the desired preparagraph spac-

ing, forces the correct fonsize, base-linespacing,
and indent, checks that enough space remains for
more than ondine, and requests a temporary indent.

.de pg \"paragraph

br \"br eak

ftR \"for ce font,

.ps 10 \"size,

Vs 12p \"spacing,

in 0 \"and indent

S 0.4 \"prespace

.ne 1+\n(Vu \"'want morethan 1 line
i 0.2i \"temp indent

The first break irpg will force out any previous par-
tial lines, and must occureforethe vs. The forcing

of font, etc. is partly a defense against prior error and

partly to permit things likesectionheadingmacrosto
set parameters only onceThe prespacingparameter
is suitable forTROFE a larger space, at least as big
as the output device vertical resolutiowpuld be
more suitable iNNROFFE The choice of remaining
space to test for in thee is the smallestamount
greater than one linghe .V is the available vertical
resolution).

The intended usage fslp label”; label will begin at
0.2inch, and cannot exceed a length of iAch
without intruding into the paragraphlhe label could
be right adjusted against Oidch by setting the tabs
instead with.ta 0.4iR 0.5i. The last line oflp ends
with \c so that it will become @art of the first line
of the text that follows.

T4. Multiple Column Output

The productionof multiple column pages requires the
footer macro to decide whether vtas invoked by
other than the last column, so that it will begin a new
column rather than produce the bottom margirhe
headercaninitialize a column register that the footer
will increment and test.The following is arranged
for two columns, but is easily modified for more.

.de hd \"header

.nrcl 01

\"init column count
.mk \"mark top of text
.defo \"footer
de \Wn+(cl<2 \{\
.po +3.4i \"next column; 3.1+0.3
xt \"back to mark

- 27 -

NROFHTROFF User's Manual
October 11, 1976

.ns\} \"no-space mode

£ \{\

.po \nMu \"restore left margin
“bp \}

1134 \"column width

.nr M \n(.o \"save left margin

Typically a portion of the top of the first page con-
tains full width text; the request for the narroviiee
length, as well as anothenk would be made where
the two column output was to begin.

T5. Footnote Processing

The footnote mechanism to be described is used
imbeddingthe footnotes in the input text at the point
of referencedemarcated by an initiain and a termi-
nal .ef:

fn
Footnote text and control lines...
f

In the following, footnotes are processed in a separate

environment and diverted for later printing in the
space immediately prior to the bottom margifhere
is provision for the case whetie last collectedfoot-
note doesn’'t completely fit in the available space.

.de hd

\"header

nrx01 \"init footnote count

.nr 'y 0-\\nb \"current footer place

.ch fo—\nbu \"reset footer trap

Af \n(dn .fz \"leftover footnote

defo \"footer

.nrdn 0 \"zero last diversion size
Af \nx \{\

evl \"expand footnotes in evl
.nf \"retain vertical size

FN \"footnotes

IrmFN \"delete it

Af "\n(.z'fy" .di \"end overflow diversion
.nrxo \"disable fx

ev \} \"pop environment

bp

.de fx \"process footnote over flow
Af\nx .di fy \"divert overflow

de fn \"start footnote

.da FN \"divert (append) footnote
evl \"in environment 1

if W\n+x=1 fs \"if first, include separator

fi \"fill mode

de €f \"end footnote

br \"finish output

.nr z\n(.v \"save spacing

v \"pop ev

di \"end diversion

.nry —\\n(dn \"new footer position,

Af \nx=1 .nr y —(\n(.v—=\\n2) \
\"uncertainty correction

.ch fo\\nyu \"y is negative

Af (\n(nl+1v)>(\\n(.p+\ny) \

.ch fo \\n(nlu+1v \"it didn’t fit

.defs

\"separ ator
\I” 1i \"1 inch rule
br
defz \"get leftover footnote
fn
.nf \"retain vertical size
fy \"where fx put it
€f
.nr b 1.0i \"bottom margin size
.wh 0 hd \"header trap
.wh 12i fo \"footer trap, temp position
wh —\nbu fx \"fx at footer position
.ch fo—\nbu \"conceal fx with fo

The headehd initializes a footnote count register
and sets both the current footeap position register

y and the footer trap itself to a nominpbsition
specified in registeb. In addition, if the registedn
indicates a leftover footnotdz is invoked to repro-
cess it. The footnote start macrin begins a diver-
sion (append) in environment 1, and increments the
countx; if the count is one, the footnote separdtor
is interpolated. The separator is kept in a separate
macro to permit user redefinitionThe footnote end
macroef restoresthe previous environment and ends
the diversion after saving the spacing size in register
z. y is then decremented by the sizetloé footnote,
available indn; then on the first footnots, is further
decremented by the difference in vertidadse-line
spacingsof the two environments, to prevent the late
triggering the footer trap from causing the last line of
the combined footnotes to overflowlhe footer trap

is then set to the lower (on the page) yofor the
current page positioml) plus one line, to allow for
printing the reference line.lf indicated by x, the
footer fo rereads the footnotes fror&RN in nofill
modein environment 1, and deletéd\. If the foot-
notes were too large ftit, the macrofx will be trap-
invoked to redivert the overflow intdy, and the

- 28 -

NROFHTROFF User's Manual
October 11, 1976

registerdn will later indicate to théheademwhetherfy

is empty. Both fo andfx are planted in the nominal
footer trap position in an order that causesto be
concealed unless thfo trap is moved. The footer
then terminates the overflodiversion, if necessary,
and zerosx to disablefx, because thaincertainty
correction together with a not-too-late triggering of
the footer can result in thidotnote rereadingfinish-
ing before reaching thix trap.

A good exercise for the student is to combihe
multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has endedROFF and TROFF
invoke the end macro (87), if any, and when it
finishes, eject the remainder of thage. During the
eject, any traps encountered are processed normally.
At the end of this last page, processing terminates
unlessa partial line, word, or partial word remains.

If it is desired that another padee started,the end-
macro

deen \"end-macro

\c

bp

.em en
will deposit a null partial word, and effect another
last page.

-29 -

NROFHTROFF User's Manual
October 11, 1976

Table |

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non-alphanumeric char-
acters separated Byem space. The Special Mathematical Font was specially prepared for Bell Laboratories by
Graphic Systems, Inc. of Hudson, New Hampshifbe Times Roman, Italic, and Bold are among the many
standard fonts available from that company.

Times Roman

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
1$%&() " *+—.,/:;=2[]0
eO0—- VvV fififffifi °t' ' ¢0 O
Times ltalic

abcdefghijkimnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890

I$%&() "*+—.,/:;=?[]10
c0—- WY %fiflfffifl >t ' ¢0O O
Times Bold

abcdefghijklmnopqgr stuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
1$% & ()" *+—.,/:;=2[]0
m—- L fifififfifict ¢00

Special Mathematical Font

N T /<>{}#@+-=0
aBydelnNBIKAPVEOTIPOCTUOX P W
FAOGAZNZYDPWQ

V 2<=00%2 5 c 11 x+20n0000w0
§0- 000} =®|O000000000000

-30 -

NROFHTROFF User's Manual
October 11, 1976

Table Il

Input Naming Conventions for “, ,and —
and for Non-ASCI| Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Char Name Name Char Name Name

S close quote fi \(fi fi
‘ open quote fl\(fl fl
— \(em 3 Em dash ffo\(ff ff
- - hyphen or ffi \(Fi ffi
- \(hy hyphen ffl \(FI ffl
- - current font minus ° \(de degree
e \(bu Dbullet T \(dg dagger
O \(sq square " \(fm foot mark
_ \(ru rule ¢ \(ct centsign
oo \(14 14 O \(rg registered
» \(12 R O \(co copyright
% \34 2

Non-ASCII charactersand *, °, _, +, —, =, and Oon the special font.

The ASCII character®, #,", ", °, <, >,\, {, }, 7, 7, and__ exist only on the special font and are printed a%-a

em spaceif that font is not mountedThe following characters exist only on the special font except for the upper
caseGreek letter names followed by T which are mapped into upper case English letters in whatever font is
mountedon font position one (default Times RomanThe special math plus, minus, and equals are provided to
insulate the appearance of equations from the choice of standard fonts.

Input Character Input Character

Char Name Name Char Name Name

+ \(pl mathplus A\ lambda

- \(mi mathminus poo*m mu

= \(eq mathequals v \(*n nu

g \(** math star & \(*c xi

8§ \(sc section o \(*o omicron

" \(aa acuteaccent m \(*p pi

\(ga graveaccent p\(*r rho

_ \(ul underrule o \(*s sigma

7/ \(sl slash (matching backslash) ¢ \(ts terminalsigma

a \(*a alpha T \(*t tau

B \(*b» Dbeta U \(*u upsilon

vy \(*¢ gamma o \(*f phi

0 \(*d delta X \(*> chi

€ \(*¢ epsilon U \(*q psi

¢ \(*z zeta w \(*w omega

n \(ty eta A \(*A Alphat

0 \(*h theta B \(*B Betat

U\ iota r \(*¢ Gamma

K \(*k kappa A \(*D Delta

-31 -

NROFHTROFF User's Manual
October 11, 1976

@]
=
8

<0 EXeg<-AMUTIIOMNZZI>XA—0INM

H+oOooOO—d O 8 O0O0Od>D OH & x < =1 | wgmmiIn v

Injput
Name
\(*E
\(*Z
\(*Y
\(*H
\(*1
\(*K
\(*L
\(*M
\(*N
\(*C
\(*O
\(*P
\(*R
\(*S
\(*T
\(*U
\(*F
\(*X
\(*Q
\(*W
\(sr
\(rn
\(>=
\(<=
\(::
\("=
\(ap
\(I=
\(—>
\(<-
\(ua
\(da
\(mu
\(di
\(+-
\(cu
\(ca
\(sb
\(sp
\(ib
\(ip
\(if
\(pd
\(gr
\(no
\(is
\(pt
\(es
\(mo
\(br
\(dd

Character
Name

Epsilont

Zetat

Etat

Theta

lotat

Kappat
Lambda

Mut

Nut

Xi

Omicront

Pi

Rhot

Sigma

Taut

Upsilon

Phi

Chit

Psi

Omega

square root
root en extender
>=

<=
identicallyequal
approx=
approximates
not equal

right arrow

left arrow
uparrow
downarrow
multiply

divide
plus-minus
cup(union)
cap(intersection)
subsebf
supersedf
impropersubset
impropersuperset
infinity
partialderivative
gradient

not
integralsign
proportionafto
emptyset
membeiof

box vertical rule
doubledagger

oo ooooooooO—@d § g

-32 -

Input Character

Name Name

\(rh right hand

\(Ih left hand

\(bs Bell System logo
\(or or

\(ci circle

\(It left top of big curly bracket

\(Ib left bottom

\(rt right top

\(rb right bot

\(Ik left center of big curly bracket

\(rk right center of big curly bracket

\(bv boldvertical

\(If left floor (left bottom of big
square bracket)

\(rf right floor (right bottom)

\(Ic left ceiling (left top)

\(rc right ceiling (right top)

May 15, 1977

Options

-h

Old Requests

.adc

.Soname

New Request

.abtext

fzFN

Summary of Changes to N/TROFF Since October 1976 Manual

(Nroff only) Output tabs used during horizontal spacingpeedoutput aswell asreduceout-
put byte count. Device tab settings assumed to be every 8 nonuhatacterwidths. The
default settings of input (logical) tabs is also initialized to every 8 nominal character widths.

Efficiently suppresses formatted outpudnly message output will occur (froftm"s and diag-
nostics).

The adjustmentype indicator "c" may now also be a number previously obtained from 'tlie
register (see below).

The contentsof file "namée' will be interpolated at the point tHeso" is encountered.Previ-
ously, the interpolation was done upon return to the file-reading input level.

Prints"text" on the message output and terminates without further procedsitigxt" is miss-
ing, "User Abort."is printed. Does not cause a breakhe output buffer is flushed.

forces font"F" to be in siz N. N may have the form N, +N, or -NFor example,

fz 3 -2
will cause an implicils-2 every time font 3 is entered, and a correspondifgwhenit is left.
Special font characters occurring during the reign of font F will have stme size
modification. If special characters are to be treated differently,

fzSFN
may be used to specify the size treatment of special characters during féat Example,

fz 3 -3

fzS3-0
will cause automatic reduction of font 3 by 3 points while the special charametd not be
affected. Any “.fp” request specifying a font on some position must precede “.fz" requests
relating to that position.

New Predefined Number Registers.

k

Read-only.Containsthe horizontal size of the text portion (without indent) of the current par-
tially collected output line, if any, in the current environment.

Read-only.A number representing the current adjustment mode and t@ae. be saved and
later given to théad" request to restore a previous mode.

Read-only. 1 if the current page is being printed, and zero otherwise.
Read-only. Contains the current line-spacing parameter ("Is").

Generalregisteraccessto the input line-number in the current input fil€ontains the same
value as the read-onlyc" register.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems photo-
typesetter on theNixt andGCOS operating systemsThis device is capable of pro-
ducing high quality text; this paper is an exampléroff output.

The phototypesetter itself normally runs wfthur fonts, containingroman, italic
and bold letters (as on this page), a full greek alphabetaaudbstantialnumber of
specialcharacters and mathematical symboBGharacters can be printed in a range of
sizes, and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions, as
well asthe usualfeaturesof a formatter — right-margin justification, automatic hyphe-
nation, page titling and numbering, and so dinhalso provides macros, arithmetic vari-
ables and operations, and conditional testing, for complicated formatting tasks.

This documentis an introduction to the most basic use tobff. It presents just
enough information to enable the user to do simple formatitisigslike making view-
graphs, and to make incremental changes to existing packagesffofommands. In
most respects, theNIX formatter nroff is identical totroff, so this document also
serves as a tutorial am off.

August 4, 1978

TUNIX is a Trademark of Bell Laboratories.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

troff [1] is a text-formatting program, written
by J. F. Ossanna, for producing high-quality printed
output from the phototypesetter on thuNIX and
GCOS operatingsystems. This document is an exam-
ple oftroff output.

The single most important rule of usihgff is
not to use it directly, but through some intermediary.
In many waystroff resembles an assembinguage
— a remarkably powerful and flexible one — but
nonethelesssuch that many operations must be
specified at a level of detail and inf@m thatis too
hard for most people to use effectively.

For two special applications, there are pro-
grams that provide an interface tiwff for the major-
ity of users. eqn [2] provides an easy to learn
language for typesetting mathematics; g user
need know ndroff whatsoeverto typeset mathemat-
ics. tbl [3] provides the same convenience fmo-
ducing tables of arbitrary complexity.

For producing straight text (which may well
contain mathematics or tables), there amumberof
‘macro packages’ that define formatting rulead
operations for specific styles of documents,
reduce the amount of direct contact wittoff. In
particular, the -ms’ [4] and PWB/MM|[5] packages
for Bell Labs internal memoranda and external papers
provide most of the facilities needed for a wid@ge
of document preparation(This memo wagprepared
with ‘=ms’.) There are also packages for viewgraphs,
for simulating the olderoff formatters onUNIX and
GCOS and for other special applicationgypically
you will find these packagesasierto use than troff
once you get beyond the mdsivial operations;you
should always consider them first.

and

In the few cases where existing packages don't
do the whole job,the solution is not to write an
entirely new set ofroff instructions from scratch, but
to make small changes to adapt packagesatineady
exist.

In accordance with thigphilosophy of letting
someone else do the work, the pairtroff described
here is only a small part of thehole, although it
tries to concentrate on the manseful parts. In any

case, there is no attempt to bemplete. Rather,the
emphasids on showing how to do simple things, and
how to make incremental changes to what already
exists. The contents of the remaining sections are:

2. Point sizes and line spacing

3. Fonts and special characters

4. Indents and line length

5. Tabs

6. Local motions: Drawing lines and characters
7. Strings

8. Introduction to macros

9. Titles, pages and numbering

10. Number registers and arithmetic
11. Macros with arguments

12. Conditionals

13. Environments

14. Diversions

Appendix: Typesetter character set

The troff described here is the C-languagersion
running onUNIX at Murray Hill, as documenteth

[1].

To usetroff you have to prepare not only the
actual text you want printed, bsome information
that tellshow you want it printed. (Readersvho use
roff will find the approach familiar.)For troff the
text and the formatting information areften
intertwined quite intimately.Most commanddo tr off
are placed on a line separate from teat itself,
beginning with a period (one commapdr line). For
example,

Some text.
.ps 14
Some more text.

will change the ‘point size’, that is, the size of the
letters being printed, to ‘14 point’ (or@oint is 1/72
inch) like this:

Some text. SOMe more text.

Occasionally, though, something special occurs
in the middle of a line — to produce

Area =TT 2

you have to type
Area =\([p\fINfR\As8\u2\d\sO

(which we will explain shortly). The backslashchar-
acter\ is used to introducéroff commands and spe-
cial characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the commamps sets the
point size. One point is 1/72 inch, so 6-point charac-
ters are at most 1/12 inch high, and 36-point charac-
ters are’ inch. There are 15 point sizedisted
below.

6 point: Pack my box with five dozen liquor jugs.

7 point: Pack my box with five dozen liquor jugs.

8 point: Pack my box with five dozen liquor jugs.

9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor

11 point: Pack my box with five dozen
12 point: Pack my box with five dozen

14 point: Pack my box with five
16 point18 point20 point

222428 36

If the number afterppss not one ofheselegal
sizes, it is roundedup to the next valid value, with a
maximum of 36. If no number follows.ppstroff
revertsto the previous size, whatever it wasr off
beginswith point size 10, which is usually fineThis
document is in 9 point.

The point size can also be changed in the mid-
dle of a line or even a word with the in-line com-
mand\s. To produce

UNIX runs on aDP-11/45

type
\s8UNIX\s10 runs on &8PDP-\s1011/45

As above\s should be followed by a legal point size,
except thadsO causes the size to revert to its previous
value. Noticethat\s1011 can be understood correctly
as ‘size 10, followed by an 11if the sizeis legal,
but not otherwise.Be cautious with similar construc-
tions.

Relative size changes are also legal and useful:
\s—2UNIX\s+2

temporarily decreases the size, whatever ibystwo
points, then restores itRelative size changekave
the advantagethat the size difference is independent
of the starting size of the documenthe amount of
the relative change is restricted to a single digit.

The other parameter that determingkat the
type looks like is the spacing between linehich is
set independentlyof the point size. Vertical spacing
is measured from the bottom of oliee to the bot-
tom of the next. The command to controVertical
spacing is.v8s For running text, its usually bestto
set the vertical spacing about 20% bigger thha
charactersize. For example, so far in this document,
we have used “9 on 11", that is,

.ps 9
.vs 11p

If we changed to

.ps 9

.vs 9p
the running text would look like thisAfter a few
lines, you will agree itooks a little cramped. The
right vertical spacing is partly a mattef taste,
depending on how much textou want to squeeze
into a given space, and partly a matter of traditional
printing style. By default,troff uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square incfThis is
12 on 14.

Point size and vertical spacing make a substantial difference in the
amount of text per square inclizor example, 10 on 12 uses about twice as much
spaceas 7 on 8. This is 6 on 7, which is even smallett packs a lotmore
words per line, but you can go blind trying to read it.

When used without argumentsps and .v8s
revertto the previous size and vertical spacing respec-
tively.

The commandsgps used to get extra vertical
space. Unadorned, it gives you one extra blank line
(one .ws whatever that has been set td)ypically,
that's more or less than you want, ssp.sgan be fol-
lowed by information about how much space you
want —

.Sp 2i

means ‘two inches of vertical space’.
.Sp 2p

means ‘two points of vertical space’; and
.Sp 2

means ‘two vertical spaces’ — twaf whatever.vs is
set to (this can also be made explicit withspsBv);
troff also understands decimal fractions most
places, so

.Sp 1.5i

is a space ofL.5 inches. These same scale factors
can be used aftewsvio define line spacing, and
fact after most commands that deal with physical
dimensions.

It should be noted that all size numbere
converted internally to ‘machine units’, whicare
1/432 inch (1/6 point). For most purposesthis is
enough resolution that you doriiaveto worry about
the accuracy of the representatiorthe situation is
not quite so good vertically, wheresolutionis 1/144
inch (1/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at any one time. Normally three fonts (Times
roman, italic and bold) and ormllection of special
characters are permanently mounted.

abcdefghijkimnopqgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgr stuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbasd miscellany of
the special font are listed in Appendix A.

troff prints in roman unless told otherwis@o
switch into bold, use thdt.lommand

ft B
and for italics,
gt

To return to roman, usdt R; to return to the previ-
ous font, whatever it was, use eithérPftor just.ftt
The ‘underline’ command

.ul

causesthe next input line to print in italics.ul can
be followed by a count to indicate that more than one
line is to be italicized.

Fonts can also be changed within a line or
word with the in-line commantf:

boldfacetext
is produced by
\fBbold\flface\fR text

If you want to do this so the previous font, whatever
it was, is left undisturbednsert extra\fP commands,
like this:

\fBbold\fP\flface\fP\fR text\fP

Because only the immediately previous forg
rememberedyou have to restore the previous font
after each change or you can lose fthe sameis
true of .ps and.veswhen used without an argument.

There are other fontsvailable besides the
standard set, although you can stifle only four at
any given time. The command.ffptells troff what
fonts are physically mounted on the typesetter:

fp3H

saysthat the Helvetica font is mounted on position 3.
(For a complete list of fonts and what thiepk like,
see thetroff manual.) Appropriate.fp commands
should appear at the beginning of your documiént
you do not use the standard fonts.

It is possible to make a document relatively
independentof the actual fonts used to print it by
usingfont numbers instead of names; for examjdfig,
and .fft®d mean ‘whatever font is mounted position
3’, and thus work for any settingNormal settings
areromanfont on 1, italic on 2, bold on 3, and spe-
cial on 4.

There is also a wayo get ‘synthetic’ bold
fonts by overstrikingletters with a slight offsetLook
at the.dslcommand in [1].

Special characters havi®ur-characternames
beginning with\(, and they may be inserteany-
where. Forexample,

Yo+ Yo=Y
is produced by
\(14 +\(12 =\(34

In particular, greek letters ar@l of the form \(G-,
where— is an upper or lowecaseroman letter rem-
iniscent of the greekThus to get

Z(axp) — o
in baretroff we have to type
\(BO\@\(Mu\(b) \(—> \(if

That line is unscrambled as follows:

\(CB 2
((

\(Ca a
\(mu x
\(Ch B
))

\(—> -
\(if o0

A complete list of these special namescurs in
Appendix A.

In egqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta-> inf

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a sin-
gle character as far amoff is concerned —the
‘translate’ command

tr \(mi\(em

is perfectly clear, meaning

Ar—

that is, to translate into —.

Some characters arautomatically translated
into others: grave °~ and acute ~ accents(apos-
trophes) become open and clasegle quotes™,; the
combination of “...” is generally preferabléo the
double quotes"...". Similarly a typed minus sign
becomes a hyphen -To print anexplicit — sign, use
\-. To get a backslash printed, use

4. Indents and Line Lengths

troff startswith a line length of 6.5 inches, too
wide for 8%x11 paper. To reset the line length, use
the llcommand, as in

Al 6i

As with .sp, the actual length can Ispecifiedin
several ways; inches are probably the most intuitive.

The maximum line lengthprovided by the
typesetteris 7.5 inches, by the wayTo use the full
width, you will have to reset the default physical left
margin (“page offset”), which is normally slightly
less than one inch from the left edge of the paper.
This is done by thepgpgommand.

.po O

sets the offset as far to the left as it will go.

The indent commandninauses the lefnargin
to be indented by somspecifiedamountfrom the
pageoffset. If we use.into move the left margin in,
and .lll to move the right margin to the left, we can
make offset blocks of text:

.in 0.3i

Al -0.3i

text to be set into a block
A +0.3i

.in =0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum; fiat
voluntas tua, sicut in caelet in terra. ...
Amen.

Notice the use of ‘+' and-’ to specify the amount of
change. These change the previous setting by the
specified amount, rather than justerridingit. The
distinction is quite important.ll +1i makes lineone
inch longer;.lll1limakes them one indong.

With .in, .l and Jpm, the previous value is used
if no argument is specified.

To indent a single line, use the ‘temporary
indent’ command.titi For example, all paragraphs in
this memo effectively begin with the command

i3

Three of what? The default unit for.titias for most
horizontally oriented commanddl,(.lin, .po), is ems;
an em is roughly the width of the letter ‘m the
current point size. (Precisely, a em in size is p
points.) Althoughinchesare usually clearer than ems
to people who don't set type for a living, ems have
place: they are a measure of size that is proportional
to the current point size. If you want to make text
that keepsits proportions regardless of point size, you
should use ems foall dimensions. Ems can be
specified as scale factors directly, astir2 &n2.5m

Lines can also be indented negatively if the
indent is already positive:

.ti —0.3i

causes the next line to be moved back three tasfths
aninch. Thus to make a decorativeitial capital, we
indent the whole paragraph, then move the letter ‘P’
back with a.tticommand:

ater noster qui est in caelis
Psanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tusicut
in caelo, et in terra. ..Amen.

Of course, there is also some trickerymakethe ‘P’
bigger (just a \s36P\s0’), and to move it down from
its normal position (see the section on local motions).

5. Tabs

Tabs (theASCIlI ‘horizontal tab’ character) can
be usedto produce output in columns, or to set the
horizontal position of output.Typically tabs are used
only in unfilled text. Tab stops are sdty default
every half inch from the current inderiyt can be
changed by theta command. To set stops every
inch, for example,

.ta 1i 2i 3i 4i 5i 6i

Unfortunately the stops are left-justifiezhly
(as on a typewriter), so lining up columns of right-
justified numbers can bpainful. If you have many
numbers, or if you neethore complicated tablday-
out, don’'t use troff directly; use thetbl program
described in [3].

For a handful of numeric columns, you can do
it this way: Precede every number by enough blanks
to make it line up when typed.

.nf
ta 1i 2i 3i
ltab 2tab 3

40 tab 50 tab 60
700 tab 800 tab 900
fi

Then changeeach leading blank into the strind0.
This is a character that does not print, that hasthe

same width as a digitWhen printed, thiswill pro-
duce

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-ovepace
with some character other than blanks by setting the
‘tab replacement character’ with thte dcommand:

.ta 1.5i 2.5i
tc\(ru (\(ruis"_")
Nametab Age tab

produces

Name Age

To resetthe tab replacement character to a blank, use
.tc with no argument.(Lines can also be drawmith
the\l command, described in Section 6.)

troff also providesa very general mechanism
called ‘fields’ for setting up complicated columns.
(This is used bytbl). We will not go into it in this
paper.

6. Local Motions: Drawing lines and characters

Remember ‘Area =r|r2’ and the big ‘P’ inthe
Paternoster. How are they done?troff provides a
host of commands for placing characters of aine
at any place. You can use them to draw special char-
acters or to tune your output for a particular appear-
ance. Most of these commands are straightforward,
but messy to read and tough to type correctly.

If you won't useegn, subscripts and super-
scripts are most easily done with the half-line local
motions\u and\d. To go back uphe page half a
point-size, insert au at the desired place; to go
down, insert &d. (W and\d should always be used in
pairs, as explained below.Jhus

Area =\(Cpr\u2\d

produces

Area =1'[r2
To make the ‘2’ smaller, bracket it with\s—2..\s0.
Since\u and\d refer to the current point size, be sure
to put themeitherboth inside or both outside the size
changes,or you will get an unbalanced vertical
motion.

Sometimes the spaagiven by \u and\d isn't
the right amount. The \v commandcan be used to
request an arbitrary amounf vertical motion. The
in-line command

\v’(amount)’

causesmotion up or down the page by the amount
specified in ‘(amount)’.For example, to move the ‘P’
down, we used

.in +0.6i (move paragraph in)
AI'-0.3i (shorterlines)
i —0.3i (move P back)

\v'2"\s36P\sO\v’ 2 ater noster qui est
in caelis ...

A minus sign causes upward motiavhile no sign or
a plus sign means down the padehus\v'—2 causes
an upward vertical motion of two line spaces.

There are many other ways tepecify the
amount of motion —

\v0.1i"

\v'3p’

\v'-0.5m’
andsoon are all legal.Notice that the scale specifier
i or p orrmgoes inside the quotesAny character can
be used in place of the quotes; this is also truallof
othertroff commands described in this section.

Sincetroff doesnot take within-the-line verti-
cal motions into account when figuring aulhereit is
on the page, output lines can haweexpectedposi-
tions if the left and right ends aren’t at the sarad-
ical position. Thus\v, like \u and\d, should always
balance upward vertical motion in a line withe
same amount in the downward direction.

Arbitrary horizontal motions are alsavailable
— \h is quite analogous tw, except that the default
scale factor is ems instead of line spacesAs an
example,

\h"-0.11"

causesa backwards motion of a tenth of an inclAs

a practical matter, consider printing the mathematical
symbol >3, The default spacing is too wide, egn
replaces this by

>\h"-0.3m">
to produces.

Frequently\h is used with the ‘width function’
\w to generate motions equal to the width of some
character string.The construction

\w’thing”
is a numberequalto the width of ‘thing’ in machine
units (1/432 inch). All troff computations are ulti-

mately done in these unitsTo move horizontally the
width of an ‘X', we can say

\h"\Ww X u”
As we mentioned above, the default sctletor for
all horizontal dimensions imjtems, so here weust
have theuufor machine units, or the motigroduced
will be far too large. troff is quite happywith the

nested quotes, by the way, lemg asyou don't leave
any out.

As alive example of this kind of construction,
all of the command names in the text, lilsp,.spere

done by overstriking witha slight offset. The com-
mands for.sppare

.sp\h"Aw".sp’u\h"1u’.sp
That is, put out ‘.sp’, move left by theidth of ‘.sp’,
move right 1 unit, and print ‘.sp’ again(Of course
there is a way to avoid typing that much ingat

each commandname, which we will discuss in Sec-
tion 11.)

There are also several special-purpdseff
commands for local motionWe have already seen
\0, which is an unpaddable white spaafethe same
width as a digit. ‘Unpaddable’ means that it will
never be widened or split across line by line
justification and filling. There isalso\(blank), which
is an unpaddable character the width of a spéde,
which is half that width\", which is one quarter of
the width of a space, and&, which has zerowidth.
(This last one is useful, for example, @mtering a
text line which would otherwise begin with a *.’.)

The commando, used like

\o’set of characters’

causes (up to 9) characters to be overstruck, centered

on the widest. This is nice for accents, as in
syst\o"e\(ga"me t\o"e\(aa"\o"e\(aa"phonique
which makes
systene tdéphonique

The accents argga and\(aa, or\" and\’; remember
that each is just one charactertitoff.

You can make your ownoverstrikes with
another special conventiokg, the zero-motion com-
mand. \zx suppresses the normal horizontal motion
after printing the singleharacterx, so another char-
acter can be laid on top of itAlthough sizescan be
changed within\o, it centers the characters on the
widest, and there can be no horizontal or vertical
motions, so\z may be the only way to get what you
want:

ol

is produced by

.Sp 2
\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq

The .gpis needed to leave room for the result.

As anotherexample, an extra-heavy semicolon
that looks like

; insteadof ; or ,

can be constructed with a bigomma and a big
period above it:

\s+8z,\v'-0.25m"\v'0.25m"\s0

‘0.25m’ is an empirical constant.

A more ornate overstrike is given by theack-
eting function\b, which piles up characters vertically,
centered on the current baselinEhus wecan get big
brackets, constructing them witbiled-up smaller
pieces:

oo, 09

0% o

O O

by typing in only this:

.Sp
\D\(I(IK\(Ib" \DA(IC\(IF x \B\(re\(rf \D\(r\(rk\(rb

troff also provides a convenient facility for
drawing horizontal and vertical lines ddrbitrary
length with arbitrary characters\l'li’ draws a line
one inch long, like this: .The
length can be followed by the character to use if the
isn't appropriate;\I'0.5i" draws a half-inch line of
dots: The construction \L is entirely
analogous, except that it drawsvertical line instead
of horizontal.

7. Strings

Obviously if a paper contains a large number
of occurrences of an acute accent over a letter ‘e’,
typing \o"e\"" for each”ewould be a great nuisance.

Fortunately,troff providesa way in which you
can store an arbitrary collection of text an'string’,
and thereafter use the string nameaashorthandfor
its contents. Strings are onef severaltroff mechan-
isms whose judicious use lets you typed@cument
with less effort and organize it so that extendive
mat changes can be made with few editing changes.

A reference to a string is replacbgl whatever
text the string waddefined as. Strings are defined
with the commanddslsThe line

.ds e\o"e\™"

defines the string ¢0 have the valu®"e\

String names may be either oneteo charac-
ters long, and are referred to kik for one character
names oh{xy for two character namesThus toget
téléphone, given the definition of the stringe eas
above, we can say(®\Cephone.

If a string must begin with blanks, define it as

.ds xx" text

The double quote signals the beginning tfe
definition. There is no trailing quote; thend of the
line terminates the string.

A string may actually be several lin&mng; if
troff encounters a at the end ofany line, it is
thrown away and the next lineddedto the current

one. Soyou can make a long string simply by end-
ing each line but the last with a backslash:

.ds xx this\
is a very\
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; wi# dis-
cuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further itroff, we
need to learn a bit about the macro facilitin its
simplestform, a macro is just a shorthand notation
quite similar to a string. Suppose we want every
paragraphto startin exactly the same way — with a
space and a temporary indent of two ems:

.Sp
i +2m

Then to save typing, we would like to collapse these
into one shorthand line, taoff ‘command’ like

PP

that would be treated hyoff exactly as

.Sp
i +2m

.PP is called anacro. The way we tell troff what
.PP means is tdefineit with the .die command:

.de PP

.Sp
i +2m

The first line names the macro (we usedPPPRor
‘paragraph’, and upper case so it wouldn't conflict
with any name thatroff might already know about).
The last line ... marks the end of the definitionn
between is the text, which is simply insertetien-
evertroff sees the ‘command’ or macro call

PP

A macro can contain any mixture of text afwdmat-
ting commands.

The definition of .FPhas to precede its first
use; undefined macros asinply ignored. Namesare
restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is criticaityportant. Not
only doesit savetyping, but it makes later changes
much easier. Suppose we decide that the paragraph
indent is too small, the verticapaceis muchtoo big,
and roman font shoultbe forced. Insteadof chang-
ing the whole document, we need only charige
definition of .FPto something like

.de PP
.Sp 2p
i +3m
ftR

\" paragraph macro

and the change takes effect everywhere we WRed .PP

\" is atroff command that causes the reft
the line to be ignored. We use it here to add com-
ments to the macro definition (a wise idea once
definitions get complicated).

As another example ahacros,considerthese
two which start and end Block of offset, unfilled
text, like most of the examples in this paper:

.de BS
.Sp

.nf

in +0.3i

\" start indented block

.de BE \" end indented block
.Sp

fi

.in =0.3i

Now we can surround text like

Copy to

John Doe
Richard Roberts
Stanley Smith

by the commandsB8%nd.BEE and it will come out
asit did above. Notice that we indented byn.i#0.3i
instead of.ifn0.3i. This way we can nest our uses of
.BS andBEEto get blocks within blocks.

If later on we decide that the indent should be
0.5i, then it is only necessaryo change the
definitions of . BESand.BEE not the whole paper.

9. Titles, Pages and Numbering

This is an area where things g&dugher,
because nothing is done for you automatical@f
necessity, some of this section is a cookbdokbe
copied literally until you get some experience.

Suppose you want a title at the top of each
page, saying just
“left top
In roff, one can say

center top right top™ ™

.he’left top”center top right top”
.fo “left bottom’center bottom’right bottom”

to get headers and footers automaticadly every
page. Alas, this doesn’t work irtroff, a serious hard-
ship for the novice. Insteadyou have to do a lot of
specification.

You have to say what the actual title is (easy);
when to print it (easy enough); and what toad@and

around the title line (harder)Taking thesein reverse
order, first we define a macrblPNfor ‘new page’to
process titles and the like at the end of one gk
the beginning of the next:

.de NP

Ibp

'sp 0.5i

Al “left top”center top’right top”
'sp 0.3i

To make sure we're at the top of a page, we issue a
‘begin page’ commandbp, which causes a skip to
top-of-page (we’ll explain thé shortly). Thenwe
space down half an inch, print the title (the usetlof
should be self explanatory; later we will discuss
parameterizingthe titles), space another 0.3 inches,
and we’re done.

To ask for.NNPat the bottom of each page, we
haveto say something like ‘when the text is within an
inch of the bottom of the page, start the processing
for a new page.” This is done with a ‘when’ com-
mand.wh

.wh —-1i NP

(No ‘" is used before NP; this is simply the name of
a macro, not a macro call.fyhe minus signmeans
‘measure up from the bottom of the page’, ‘sd.i’
means ‘one inch from the bottom’.

The .wiln command appears in the input outside
the definition of. N¥® typically the input would be

.de NP

.wh -1i NP

Now what happens?As text is actually being
output, troff keepstrack of its vertical position on the
page,and after a line is printed within one inch from
the bottom, theNRPmacro is activated(In the jar-
gon, the.whhcommand sets &rap at the specified
place, which is ‘sprung’ when that poirg passed.)
.NP causes a skip to the top of the next page (that's
what the'bp was for), then prints the title witthe
appropriate margins.

Why 'bp and'sp instead ofhppand.sg® The
answer is thatsmpand.bpp like several other com-
mands, cause hreak to take place.That is,all the
input text collected but not yet printed is flushmad
as soon as possible, and the next input line is
guaranteed to start a new line of output. we had
used.sgpor.bgpin the.NNPPmacro, this would cause a
break in the middle of the curreatitputline whena
new pageis started. The effect would be to print the
left-over part of that line at the top of the page, fol-
lowed by the next input line on mew output line.
This is not what we want. Using ' instead of. .for a
command tellgroff that no break is to take plaee

the output line currently being filled shouttbt be
forced out before the space or new page.

The list of commands that cause a break is
short and natural:
.bp .br .Sp

All others causeno break, regardless of whether you
use a..or a'. If you really need a break, add.br.br
command at the appropriate place.

.ce .fi .nf an Lt

One other thing to beware of — if you're
changing fonts or point sizes a lot, you nfand that
if you crossa page boundary in an unexpected font or
size, your titles come out in that size &odt instead
of what you intended.Furthermore, the length oi
title is independent of the current line length, so titles
will come out at the default lengtbf 6.5 inches
unlessyou changeit, which is done with thelt.lcom-
mand.

There are several ways to fix the probleais
point sizes and fonts in titlesFor the simplestappli-
cations,we can changeNRIFo set the proper size and
font for the title, then restore th@eviousvalues,like
this:

.de NP

Ibp

'sp 0.5i

ftR \" set title font to roman
.ps10 \" and size to 10 point
It 6i \" and length to 6 inches

tl “left’center’right’

.ps \" revert to previous size
ftP \" and to previous font
'sp 0.3i

This version of.N¥¥Pdoesnot work if the fields
in the .tfl command contain size dont changes. To
cope with thatrequirestroff’s ‘environment’ mechan-
ism, which we will discuss in Section 13.

To get a footer at the bottom of a page, you
can modify .NNPso it does some processing before the
'bp command, or split the job into a footer macro
invoked at the bottom margin and heeadermacro
invoked at the tomf the page. Thesevariationsare
left as exercises.

Output page numbers are computmatomati-
cally as each page is produced (starting atd,no
numbersare printed unless you ask for them expli-
citly. To getpage numbers printed, include the char-
acter%oin the.ttlline at the position where you want
the number to appear-or example

A% -7

centersthe page number inside hyphens, as on this
page. You canset the page number at any time with
either .Hgpn, which immediately starts a nepage

-9-

numbered nn or with .mn, which sets the page
number for the next page but doesn't cause a t&kip
the new page.Again, .bp +n sets the page number to
n more than its current valudyp.bpeanshpp-t1

10. Number Registers and Arithmetic

troff has a facility for doingrithmetic,and for
defining and using variablesith numeric values,
called number registers. Number registers, like
strings and macros, can be useful in settiqga
documentsoit is easy to change lateiAnd of course
they serve for any sort of arithmetic computation.

Like strings, number registers hawae or two
characternames. They are set by thenmcommand,
and are referenced anywhere by (one character
name) onn(xy (two character name).

There are quite a few pre-defined number
registers maintained biyr off, among themP®@4dor the
current page numbenl or the current vertical posi-
tion on the pagedylymo andyyrfor the current day,
month and year; ang .and.fffor the current size and
font. (The font is a number from fo 4.) Any of
these can be used in computatidilee any other
register, but some, likes.and.ff cannot be changed
with .nr.

As an exampleof the use of number registers,
in the —ms macro package [4], most significant
parametersare defined in terms of the values of a
handful of number registersThese include th@oint
size for text, the vertical spacing, and the line and
title lengths. To setthe point size and vertical spac-
ing for the following paragraphs, for example, a user
may say

.nrPS 9
.nrvs 11

The paragraph macr@®FPR defined (roughly) del-
lows:

.de PP

.ps\n(PS \" reset size
.vs\n(VSp \" spacing
ftR \" font
.Ssp0.5v \" half a line
1i +3m

This sets the font to Roman and the point sipel
line spacing to whatever values are stored in the
number register® and\&S

Why are theretwo backslashes?This is the
eternal problem of how to quote a quot&/hentroff
originally reads the macro definition, it peels off one
backslash to see what's coming nexto ensurethat
another is left in the definition when the madso
used, we have to put in two backslashes in the
definition. If only one backslash is used, poisize
and vertical spacing will be frozen at the time the
macro is defined, not when it is used.

Protecting by an extra layer of backslashes is
only needed foin, \OJ \$ (which we haven't come to
yet), and\ itself. Thingslike \s, \f, \h, \v, and so on
do not need an extra backslash, sitlvey are con-
verted bytroff to an internal code immediately upon
being seen.

Arithmetic expressions can appeanywhere
that a number is expectedis a trivial example,

.nr PS\\n(PS-2

decrementPS by 2. Expressions can use the arith-

metic operatorst, —, 0 /, % (mod), the relational
operators>, >=, <, <=, =, and !=(not equal), and
parentheses.

Although the arithmetic we have done so far
hasbeen straightforward, more complicated things are
somewhattricky. First, number registers hold only
integers. troff arithmetic uses truncating integer divi-
sion, just like Fortran. Second, in the absence of
parentheses, evaluation is dotedt-to-right without
any operator precedence (including relationpkera-
tors). Thus

70+-4+3/13

becomes—1'. Number registers can occur anywhere
in an expression, and so can scale indicatorspijke p
m, and so on (but no spaces)lthough integerdivi-
sion causestruncation, each number and its scale
indicator is converted to machinaits (1/432 inch)
before any arithmeticis done, so 1i/2u evaluates to
0.5i correctly.

The scale indicatou often has to appear when
you wouldn’t expect it — in particular, when arith-
metic is being done in eontextthat implies horizon-
tal or vertical dimensionsFor example,

AL 772i

would seem obvious enough- 3% inches. Sorry.
Remembethat the default units for horizontal param-
eters like .l are ems. That's really ‘7 ems / 2
inches’, and when translated into machine units, it
becomes zeroHow about

AL 7i/2

Sorry, still no good — the 2’ is ‘2 ems’, s@i/2’ is
small, although not zeroYou mustuse

AL 7i/2u

So again, a safe rule is @itacha scaleindicator to
every number, even constants.

For arithmetic done within antncommand,
there is no implication of horizontal or vertical
dimension,so the default units are ‘units’, and 7i/2
and 7i/2u mean the same thinghus

.nr ll 7i/2
AF\\n(llu

-10 -

doesjust what you want, so long as you don't forget
the w on the.lllcommand.

11. Macros with arguments

The next step is to define macros that can
changefrom one use to the next according to parame-
ters suppliedas arguments. To make this work, we
needtwo things: first, when we define the macro, we
have to indicate that some parts of it will pevided
as arguments when the macro is calléthen when
the macro is called we have provide actual argu-
ments to be plugged into the definition.

Let us illustrate by defining a macr8MSiat
will print its argument twopoints smaller than the
surrounding text.That is, the macro call

.SM TROFF

will produceTROFF.
The definition of. SBMis

.de SM
\s—2\\$1\s+2

Within a macro definition, the symbd\$n refers to
the mth argument that the macro was called with.
Thus\\$1 is the string to be placed in a smaller point
size when.SBMis called.

As a slightly morecomplicated version, the
following definition of .S permits optional second
and third arguments that will be printédthe normal
size:

.de SM
\$3\s-2\$1\s+2\$2

Arguments not provided when the macrccaled are
treated as empty, so

.SM TROFF),
producesTROFR), while
.SM TROFF). (

produces TROFP. It is convenient to reverse the
order of arguments because trailipginctuationis
much more common than leading.

By the way, the number of arguments that a
macro was called with iavailablein numberregister
5.

The following macro .EBD is the one used to
make the ‘bold roman’ we have been using tiaff
command names in textlt combines horizontal
motions, width computations, and argument rearrange-
ment.

.de BD
\GWS3FIWNS1\h AW \$1 u+1UW$1\FP\S2

The \h and\w commands need no extra backslash, as
we discussed aboveThe \& is there in case the
argument begins with a period.

Two backslasheare needed with thé$n com-
mands, though, to protect one of them when the
macro is being definedPerhapsa secondexample
will make this clearer.Consider amacro called .SH
which producessectionheadings rather like those in
this paper,with the sections numbered automatically,
and the title in bold in a smaller siz&he use is

.SH "Section title ..."

(If the argument to a macro is tmntainblanks,then
it must be surroundedby double quotes, unlike a
string, where only one leading quote is permitted.)

Here is the definition of theSHbirhacro:

.nr SH O
.de SH
.sp 0.3i
ft B

.nr SH\n(SH+1 \" increment number
.ps\n(PS-1 \" decrease PS

\n(SH. \$1 \" number. title

.ps\n(PS \" restore PS

.sp 0.3i

ftR

\" initialize section number

The section number is kept in numbegister SH,
which is incremented each time just before it is used.
(A number register may have the same name as a
macro without conflict but a string may not.)

We used\n(SH insteadof \n(SH and\\n(PS
instead of\n(PS.If we had usedn(SH, we would get
the value of the register at the time the macro was
defined,not at the time it wasised. If that's what
you want, fine, but notere. Similarly, by using
\\n(PS,we get the point size at the time the macro is
called.

As an example that does not involve numbers,
recall our.NNPmacro which had a

tl “left’center’right’

We could make these into parameters bging
instead

A WILTWOCT\IRT

so the title comes from three strings called, CT
and RT. If theseare empty, then the title will be a
blank line. Normally CT would be setvith some-
thing like

ds CT

to give just the page number between hyphens (as on
the top of this page), but a user cosldpply private
definitions for any of the strings.

-0 -

-11 -

12. Conditionals

Suppose we want thé&kShhacro to leave two
extra inches of space just befosection 1, but
nowhereelse. The cleanest way to do thit to test
inside the.SH macro whether the section number is
1, and add some space if it i¥he.if command pro-
vides the conditional test that we can qdsk before
the heading line is output:

.if Wn(SH=1 .sp 2i \" first section only

The condition after theif can be any arith-
metic or logical expressionlf the conditionis logi-
cally true, or arithmetically greater than zero, the rest
of the line is treated as if it were text — here a com-
mand. If the condition is false, or zero or negative,
the rest of the line is skipped.

It is possible to do more than one comménd
a conditionis true. Suppose several operations are to
be done before section XOne possibility is talefine
a macro.Sd1and invoke it if we are about to do sec-
tion 1 (as determined by aif).if

.de S1
--- processing for section 1 ---

.de SH

Jif Wn(SH=1 .S1

An alternate way is to use the extended form
of the .iff like this:

.if \n(SH=1\{--- processing
for section 1 ---}

The braces\{ and \} must occur in the positions
shownor you will get unexpected extra lines in your
output. troff also provides an ‘if-elsetonstruction,
which we will not go into here.

A condition can be negated by preceding it
with I; we get the same effect as above (but less
clearly) by using

Jif \\n(SH>1 .S1

There are a handful of other conditions that
can be tested withif.ifFor example, is the current
page even or odd?

.if e .tl “even page title”
.if o .tl “odd page title”

gives facing pages different titles whasedinside an
appropriate new page macro.

Two other conditions aré and n, which tell
you whether the formatter tsoff or nroff.

.if t troff stuff ...
.if n nroff stuff ...

Finally, string comparisons may be made in an

.if “stringl’string2” stuff

does ‘stuff’ if stringl is the same astring2. The
character separating the strings can be anything rea-
sonable that is not contained in either stringhe
stringsthemselves can reference strings withargu-
ments with\$, and so on.

13. Environments

As we mentioned,there is a potential problem
when going across a papeundary: parameterdike
size and font for a page title may well déferent
from those in effect in the texthenthe pageboun-
dary occurs. troff provides a very general way to
deal with this and similar situationsThere are three
‘environments’, each of which has independently sett-
able versions of many of thparametersassociated
with processing, including size, font, line anide
lengths, fill/nofill mode, tab stopsind even partially
collected lines. Thus the titing problem may be
readily solved by processing the main text dne
environmentandtitles in a separate one with its own
suitable parameters.

The commandeen shifts to environment;m
must be 0, 1 or 2.The commandeewith no argu-
ment returnsto the previous environmentEnviron-
ment names are maintained instack, so calls for
different environments may be nested and unwound
consistently.

Supposewe saythat the main text is processed
in environment 0, which is wher&off begins by
default. Then we can modify the new page macro
.NP to process titles in environment 1 like this:

.de NP

evl \" shift to new environment

It 6i \" set parameters here

ftR

.ps 10

... any other processing ...

.ev \" return to previous environment

It is also possible to initialize thparameterdor an
environment outside theNENPhacro, but theversion
shown keepsall the processing in one place and is
thus easier to understand and change.

14. Diversions

There are numerous occasions in page layout
when it is necessary to store some text for a period of
time without actually printingit. Footnotesare the
most obvious examplethe text of the footnot@su-
ally appearsn the input well before the place on the
page where it is to be printed is reached.fact, the
placewhereit is output normally depends on how big
it is, which implies that there mubie a way to pro-

- 12 -

cessthe footnote at least enough to decide its size
without printing it.

troff provides a mechanism calleddaersion
for doing this processing.Any part of the output may
be divertedinto a macro instead of being printed, and
then at some convenient time the macro may be put
back into the input.

The commanddidky begins a diversion —all
subsequent output is collected into the magraintil
the command.didiwith no arguments igncountered.
This terminates the diversionThe processed texs
availableat any time thereafter, simply by giving the
command

Xy

The vertical size of the last finished diversiorcan-
tained in the built-in number registdn.dn

As a simple example, suppose we want to
implement a ‘keep-release’ operation, so that text
between the commandKSKahd.KEEwill not be split
acrossa page boundary (as for a figure or table).
Clearly, when aKsS is encountered, we have to begin
diverting the output so we can find out how Higs.
Then when a.KKEis seen, we decide whethére
divertedtext will fit on the current page, and print it
eitherthereif it fits, or at the top of the next page if
it doesn't. So:

.de KS \" start keep

.br \" start fresh line

evl \" collect in new environment
fi \" make it filled text

.di XX \" collect in XX

.de KE \" end keep

.br \" get last partial line

di \" end diversion

f Wn(dn>=\\n(.t .bp \" bp if doesn’t fit

.nf \" bring it back in no-fill
XX \" text
.ev \" return to normal environment

Recall that number register /8 the current position
on the output page. Since output was being diverted,
this remains at its value when the diversimarted.
dn is the amount of text ithe diversion;.t (another
built-in register) is the distance to the next trap,
which we assumds at the bottom margin of the page.
If the diversion is large enough to go past the trap,
the .iff is satisfied, and ebbs issued.In either case,
the diverted output is then brought back wilX. XX

is essential to bring it back in no-fill mode $ooff
will do no further processing on it.

This is not the most general keep-releasa,
is it robust in the face of atlonceivableinputs, but it
would requiremore spacethan we have here to write
it in full generality. This section is not intended to

teach everything about diversions, Hot sketch out
enough that you can reaekisting macro packages
with some comprehension.

Acknowledgements

| am deeply indebted to J. F. Ossanna, the
author oftroff, for his repeated patient explanations
of fine points, and for his continuing willingness to
adapt troff to make other uses easiet. am also
grateful to Jim Blinn, Ted Dolotta, Doug Mcliroy,
Mike Lesk and Joel Sturman for helpful comments on
this paper.

References

[1] J. F. OssannayROFF/TROFF User's Manual,
Bell Laboratories Computing Science Technical

Report 54, 1976.

B. W. Kernighan, A System for Typesetting
Mathematics — User’s Guid&econdEdition),
Bell Laboratories Computing Sciendechnical
Report 17, 1977.

M. E. Lesk, TBL — A Program to Format
Tables, Bell Laboratories Computing Science
Technical Report 49, 1976.

M. E. Lesk, Typing Documents on UNDRBell
Laboratories, 1978.

J. R. Mashey and D. W. SmitRWB/MM —
Programmer’s Workbench Memoranduviac-
ros, Bell Laboratories internal memorandum.

(2]

(3]

[4]

[5]

13-

Appendix A: Phototypesetter Character Set

Thesecharactersxist in roman, italic, and boldTo get the one on the left, type the four-character name on the
right.

ff\(ff fi \(fi fl\(fl ffi \(Fi ffl \(FI
_ \(ru — \(em 7 \(14 % \(12 ¥ \(34
O \(co ° \(de T \(dg " \(fm ¢ \(ct
O \(rg e \(bu o \(sq - \(hy

(In bold, \(sqis m.)

The following are special-font characters:

+ \(pl = \(mi x \(mu + \(di
= \(eq = \(== 2 \(>= < \(<=
z \(= + \(+- - \(no / \(sl
O \(ap 0 \(= O \(pt O \or
- \(-> - \(<- 1 \(ua ! \(da
I \(is o \(pd o \(if v \(sr
O \(sb O \(sp O \(cu n \(ca
O \(b O \(ip O \(mo O \(es
: \(aa : \(ga O \(ci @ \(bs
§ \(sc ¥ \(dd = \(h = \(rh
O \(It O \(rt O \(c o \(rc
O \(b O \(rb o \(f o \(rf
O \(k O \(rk O \(bv ¢ \(ts
O \(br | \(or _ \ul N \(rn
o

These four characters also have two-character names. i§hbe apostrophe on terminals; thes the otherquote
mark.

\) \ - - \

These characters exist only on the special font, but they do not have four-character names:

{ ¥ < > "~ "~ \ # @
For greek, precede the roman letter\{iyto get the corresponding greek; for examiea isa.

abgdezyhiklImncoprstufxqw
aBydeldnBirkApviompotuvoeoxyw

ABGDEZYHIKLMNCOPRSTUFXQW
ABITrAEZHOI KAMN=ZONPZTY®PXWQ

C Reference Manual

Dennis M. Ritchie

Bell Telephone Laboratories
Murray Hill, New Jersey 07974

1. Introduction

C is a computerlanguagebasedon the earlierlanguageB [1]. The languagesindtheir compilersdiffer in two
major ways: C introducesthe notion of types,and definesappropriateextra syntaxand semanticsalso, C on the
PDP-11 is a true compiler, producing machine code where B produced interpretive code.

Most of the softwarefor the UNIX time-sharingsystem[2] is written in C, asis the operatingsystemitself. C is
alsoavailableon the HIs 6070computerat Murray Hill and andon the IBM System/37t Holmdel[3]. This paper
is a manualonly for the C languagétself asimplementedon the PDP-11. However,hints aregiven occasionallyin
the text of implementation-dependent features.

The uNix Programmer'dManual [4] describeghe library routinesavailableto C programsunderunix, andalso
the proceduregor compiling programsunderthatsystem. “The GcosC Library” by LeskandBarres[5] describes
routines available under that system as well as compilation procedlmey.of theseroutines particularlytheones
havingto do with 1/O, arealso providedunderunix. Finally, “Programmingin C— A Tutorial,” by B. W. Ker-
nighan [6], is asisefulaspromisedby its title andthe author’'spreviousintroductionsto allegedlyimpenetrablesub-
jects.

2. Lexical conventions

Therearesix kinds of tokens:identifiers,keywords,constantsstrings,expressioroperatorsandotherseparators.
In generablanks,tabs,newlines,andcommentsasdescribedelow areignoredexceptasthey serveto separatéo-
kens. At leastone of thesecharacterss requiredto separatetherwiseadjacentidentifiers, constantsand certain
operator-pairs.

If theinput streamhasbeenparsednto tokensup to a givencharacterthe nexttokenis takento includethe long-
est string of characters which could possibly constitute a token.

2.1 Comments
The characterg = introduce a comment, which terminates with the charaetérs

2.2 Identifiers (Names)

An identifier is a sequence #ttersanddigits; thefirst charactemustbe alphabetic. Theunderscoré " counts
asalphabetic.Upperandlower casedettersareconsideredlifferent. No morethanthefirst eightcharactersresig-
nificant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

C Reference Manual - 2

int break
char continue
float if
double else
struct for

auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants
There are several kinds of constants, as follows:

2.3.1 Integer constants

An integerconstanis a sequencef digits. An integeris takento be octalif it beginswith 0, decimalotherwise.
The digits8 and9 have octal value 10 and 11 respectively.

2.3.2 Character constants

A characterconstantis 1 or 2 characterenclosedn single quotes* Within a characterconstanta single
guotemust be precededdy a back-slash\”. Certainnon-graphiccharactersand“\” itself, may be escapedc-
cording to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

The escapé\ ddd’ consistsof the backslasHollowed by 1, 2,or 3 octal digits which aretakento specifythevalue
of the desiredcharacter.A specialcaseof this constructionis “\0” (not followed by a digit) which indicatesa null
character.

Characterconstantdbehaveexactlylike integers(not, in particular,like objectsof charactetype). In conformity
with the addressingstructureof the PDP-11, a characteconstaniof length 1 hasthe codefor the given charactein
the low-order byteandO in the high-orderbyte; a characteconstanof length2 hasthe codefor thefirst charactein
thelow byte andthat for the secondcharactein the high-orderbyte. Characteiconstantsvith morethanonechar-
acter are inherently machine-dependent and should be avoided.

2.3.3 Floating constants

A floating constantonsistof anintegerpart,a decimalpoint, a fractionpart,ane, andanoptionally signedinte-
gerexponent. Theintegerandfraction partsboth consistof a sequencef digits. Eithertheintegerpartor thefrac-
tion part (not both) may be missing;eitherthe decimalpoint or the e andthe exponentnot both) may be missing.
Every floating constant is taken to be double-precision.

2.4 Strings

A stringis asequencef charactersurroundedy doublequotes® " . A string hasthetype array-of-characters
(seebelow) andrefersto an areaof storageinitialized with the given characters.The compilerplacesa null byte
(\0) atthe endof eachstringsothat programswhich scanthe string canfind its end. In a string,the charactef* "
must be preceded by a “Y'in addition, the same escapes as described for character constants may be used.

C Reference Manual - 3

3. Syntax notation

In the syntaxnotationusedin this manual,syntacticcategoriesareindicatedby italic type, andliteral wordsand
characterén gothic. Alternativesare listedon separatédines. An optional terminal or non-terminal symbol is in-
dicated by the subscript “opt,” so that

{ expressiop), }

would indicate an optional expression in braces.

4, What's in a Name?

C basegheinterpretationof anidentifier upontwo attributesof the identifier: its storageclassandits type. The
storageclassdetermineshe locationandlifetime of the storageassociatedvith anidentifier; the type determines the
meaning of the values found in the identifier's storage.

Therearefour declarablestorageclassesautomatic static,external andregister. Automaticvariablesarelocal to
eachinvocationof afunction,andarediscardedn return;staticvariablesarelocal to a function, but retaintheir val-
uesindependenthof invocationsof the function; externalvariablesareindependentf any function. Registervari-
ablesarestored in thefastregistersof the machinejlike automaticvariablesthey arelocal to eachfunctionanddis-
appear on return.

C supportsfour fundamentalypes of objects:charactersintegers,single-, and double-precisiorfloating-point
numbers.

Charactergdeclared and hereinaftercalled,char) are chosenfrom the Asci set;they occupythe right-
most sevenbits of an 8-bit byte. It is alsopossibleto interpretchar s as signed,2’'s complement8-bit
numbers.

Integersift) are represented in 16-bit 2's complement notation.

Single precisionfloating point (float) quantitieshavemagnitudein the rangeapproximatelylotg8 or 0;
their precision is 24 bits or about seven decimal digits.

Double-precisiorfloating-point(double) quantitieshavethe samerangeasfloat sanda precisionof 56
bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually irdfiagsof derivedtypesconstructedrom thefun-
damental types in the following ways:
arraysof objects of most types;
functionswhich return objects of a given type;
pointersto objects of a given type;
structurescontaining objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and Ivalues

An objectis a manipulatableegionof storage;an Ivalueis an expressiorreferringto an object. An obviousex-
ampleof anIvalue expressioris anidentifier. Thereare operatoravhich yield Ivalues:for example|f E is an ex-
pressionof pointer type, then +E is an Ivalue expressiorreferring to the object towhich E points. The name
“Ivalue” comesfrom theassignmenéxpression'E1l = E2” in which theleft operandE1l mustbe anlvalue expres-
sion. The discussionof eachoperatorbelow indicateswhetherit expectdvalue operandsandwhetherit yields an
Ivalue.

6. Conversions

A numberof operatoranay, dependingon their operandscauseconversionof the value of an operandrom one
type to anotherThis section explains the result to be expected from such conversions.

C Reference Manual - 4

6.1 Characters and integers

A char object maybe usecanywhereanint maybe. In all caseghe char is convertedo anint by propa-
gatingits signthroughthe upper8 bits of the resultantinteger. This is consistentvith thetwo’s complementepre-
sentationusedfor both characterandintegers. (However,the sign-propagatiorfieaturedisappearsn otherimple-
mentations.)

6.2 Float and double

All floating arithmeticin C is carriedout in double-precisionwheneverafloat appearsn anexpressiorit is
lengthenedo double by zero-paddingts fraction. Whenadouble mustbeconvertedo float , for exampleby
an assignment, ttgouble is rounded before truncationfloat length.

6.3 Float and double; integer and character

All int s andchar s maybe convertedwithout loss of significanceto float or double . Conversionof
float ordouble toint orchar takesplacewith truncationtowardsO. Erroneousesultscanbeexpectedf the
magnitude of the result exceeds 32,767iffor) or 127 (forchar).

6.4 Pointers and integers

Integersandpointers maybe addedandcomparedjn suchacase thént is convertedasspecifiedin the discus-
sion of the addition operator.

Two pointers toobjectsof the sametype may be subtractedin this case thaesultis convertedto an integeras
specified in the discussion of the subtraction operator.

7. Expressions

The precedencef expressioroperatorss the sameasthe orderof the major subsectionsf this section(highest
precedencdirst). Thus the expressiongeferredto asthe operandsof + (87.4) are thoseexpressionglefinedin
887.1 7.3. Within eachsubsectionthe operatordhavethe sameprecedenceleft- or right-associativityis specified
in eachsubsectiorfor the operatorsliscussedherein. The precedencandassociativityof all the expressioropera-
tors is summarized in an appendix.

Otherwisethe orderof evaluationof expressionss undefined. In particularthe compilerconsiderstself free to
compute subexpressions in the order it believes most efficient, even if the subexpressions involve side effects.

7.1 Primary expressions
Primary expressions involving, —>, subscripting, and function calls group left to right.

7.1.1 identifier

An identifier is a primary expressionprovidedit hasbeensuitably declaredsdiscussedelow. Its typeis speci-
fied by its declaration. However,if the type of the identifier is “array of ...”, thenthe value of the identifier-
expressioris a pointerto thefirst object in the arrayandthe type of the expressions “pointer to ...”. Moreover,
an array identifier is not an lvalue expression.

Likewise, anidentifier which is declared‘function returning. ..
tion of a call, is converted to “pointer to function returning'.

, Whenusedexceptin the function-nameposi-

7.1.2 constant

A decimal,octal, characterpr floating constantis a primary expression.Its typeis int in thefirst threecases,
double in the last.

7.1.3 string

A stringis a primary expression.Its typeis originally “array of char ”; butfollowing the samerule asin §7.1.1
for identifiers, this is modified to “pointer tchar " and the result is a pointer to the first character in the string.

7.1.4 (expression

A parenthesizedxpressions a primary expressiorwhosetype andvalueareidenticalto thoseof the unadorned
expression.The presence of parentheses does not affect whether the expression is an Ivalue.

C Reference Manual - 5

7.1.5 primary-expression[expressior

A primary expressiorfollowed by an expressionn squarebracketss a primary expression.The intuitive mean-
ing is thatof a subscript. Usually,the primary expression has type “pointer to.”., the subscript expressioniist |,
andthetype of theresultis “* ...”. Theexpressio'E1[E2]” is identical (by definition)to “ ((E1)+(E2))”.
All the cluesneededto understandhis notationare containedin this sectiontogetherwith the discussionsn 8§
7.1.1,7.2.1, and 7.4.1 on identifie¥rs and+ respectively; §14.3 below summarizes the implications.

7.1.6 primary-expressioff expression-ligf,)

A function call is a primary expressiorfollowed by parenthesesontaininga possiblyempty,comma-separated
list of expressionsvhich constitutethe actualargumentgo the function. The primary expressiomrmustbe of type
“function returning. ..”, andtheresultof thefunctioncall is of type* ...”. As indicatedbelow,a hithertounseen
identifier followed immediatelyby a left parenthesiss contextuallydeclared taepresena functionreturninganin-
teger; thus in the most common case, integer-valued functions need not be declared.

Any actualargumentf typefloat areconvertedo double before thecall; any of type char areconverted
toint .

In preparingfor the call to a function,a copyis madeof eachactualparameterthus,all argument-passinip C is
strictly by value. A function may changethe valuesof its formal parametershut thesechangesannotpossiblyaf-
fect the valuesof the actualparameters.On the otherhand,it is perfectly possibleto passa pointeron the under-
standing that the function may change the value of the object to which the pointer points.

Recursive calls to any function are permissible.

7.1.7 primary-lvalue. member-of-structure

An lvalue expressiorfollowed by a dot followed by the nameof a memberof a structureis a primary expression.
The objectreferredto by the Ivalueis assumedo havethe sameform asthe structurecontainingthe structuremem-
ber. Theresultof the expressioris an lvalue appropriatelyoffset from the originof the given lvalue whosetypeis
that of the named structure memb@&he given Ivalue is not required to have any particular type.

Structures are discussed in 8§8.5.

7.1.8 primary-expressior> member-of-structure

The primary-expressiors assumedo be a pointerwhich pointsto an objectof the sameform asthe structureof
which the member-of-structures a part. Theresultis anlvalue appropriately offset from the origin of the pointed-to
structurewhosetypeis that of the namedstructuremember. The type of the primary-expressiomeednotin fact be
pointer; it is sufficient that it be a pointer, character, or integer.

Exceptfor the relaxationof the requirementhat E1 be of pointertype, the expression‘E1->MOS” is exactly
equivalent to “¢E1).MOS".

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 x expression

Theunary* operatormeansindirection: the expressiomustbe a pointer,andthe resultis an Ivalue referringto
the object towhich the expressiorpoints. If the type of the expressioris “pointer to ...”, the type of theresultis

7.2.2 & Ivalue-expression

Theresultof the unary& operatoris a pointerto the objectreferredto by thelvalue-expressionlf thetype of the
Ivalue-expression is :'..”, the type of the result is “pointer ta.”.

7.2.3 — expression

The resultis the negativeof the expressionand hasthe sametype. The type of the expressiormustbe char ,
int ,float , ordouble .

C Reference Manual - 6

7.2.41 expression

Theresultof the logical negationoperator! is 1 if the value of the expressiornis 0, 0if the valueof the expres-
sion is non-zeroThe type of the result iat . This operator is applicable onlyitat s orchar s.

7.2.5 _ expression

The~ operator yields the one’s complement of its operdrite type of thexpressiomustbeint orchar , and
the resultisnt .

7.2.6 ++ lvalue-expression

The objectreferredto by the Ivalueexpressions incremented.The valueis the new value of the Ivalueexpres-
sionandthetypeis thetypeof thelvalue. If theexpressions int orchar , it isincrementedy 1; if it is apointer
to anobject,it is incrementedy thelengthof theobject. ++ is applicableonly to thesetypes. (Not, for example to
float ordouble)

7.2.7 — Ivalue-expression
The object referred to by the Ivalue expression is decremented analogously to the ++ operator.

7.2.8 Ivalue-expression ++

Theresultis the value of the objectreferredto by the Ivalueexpression.After the resultis noted,the objectre-
ferredto by the Ivalueis incrementedn the samemannerasfor the prefix ++ operator: by 1 for amt orchar , by
the length of the pointed-toobject for a pointer. The type of the resultis the sameas the type of the Ivalue-
expression.

7.2.9 Ivalue-expression—

Theresultof the expressioris the value of the objectreferredto by the the Ivalueexpression.After theresultis
noted, the object referred to by the Ivalue expression is decremented in a way analogous to the postfix ++ operator.

7.2.10 sizeof expression

The sizeof operatoryields the size, irbytes,of its operand. Whenappliedto an array, theresultis the total
numberof bytesin the array. Thesizeis determinedrom the declaration®f the objectsin the expression.This ex-
pressionis semanticallyan integerconstantand may be usedanywherea constantis required. Its major useis in
communication with routines like storage allocators and 1/O systems.

7.3 Multiplicative operators
The multiplicative operators, / , and%group left-to-right.

7.3.1 expression* expression

The binary » operatorindicatesmultiplication. If both operandsareint or char , theresultis int ; if oneis
int orchar and onefloat or double , theformeris convertedto double , andtheresultis double ; if both
arefloat ordouble , the result iglouble . No other combinations are allowed.

7.3.2 expressionl expression
The binary/ operator indicates divisioriThe same type considerations as for multiplication apply.

7.3.3 expressio®oexpression

Thebinary %operatotyields theremaindefrom the division of thefirst expressiorby the second.Both operands
mustbeint or char , andtheresultisint . Inthecurrentimplementationthe remaindehasthe samesignasthe
dividend.

7.4 Additive operators
The additive operators and- group left-to-right.

C Reference Manual - 7

7.4.1 expressiorr expression

The result is the sum tifieexpressionsif bothoperandsreint or char , theresultisint . If botharefloat
or double , theresultis double . If one ischar orint and one idloat ordouble , the former is converted to
double and the result idouble . If anint orchar isaddedo a pointer,theformeris convertedoy multiplying
it by the lengthof the object towhich the pointerpointsandthe resultis a pointerof the sametype asthe original
pointer. Thusif P is a pointerto anobject,the expression'P+1” is a pointerto anotherobjectof the sametype as
the first and immediately following it in storage.

No other type combinations are allowed.

7.4.2 expressionr- expression

Theresultis the differenceof the operands.If bothoperandsreint , char , float , or double , the sametype
considerationsisfor + apply. If anint or char is subtractedrom a pointer,the formeris convertedn the same
way as explained undef above.

If two pointers toobjectsof the sametype aresubtractedthe resultis convertedby division by thelengthof the
object)to anint representing thaumberof objectsseparatinghe pointed-toobjects. This conversionwill in gen-
eral give unexpectedesultsunlessthe pointergoint to objectsin the samearray, sincepointers,evento objectsof
the same type, do not necessarily differ by a multiple of the object-length.

7.5 Shift operators
The shift operators< and>> group left-to-right.

7.5.1 expressiork< expression
7.5.2 expressiorr> expression

Both operandsnustbeint or char , andtheresultis int . The secondoperandshouldbe non-negative.The
valueof “E1<<E2” is E1 (interpretedas abit patternl6 bits long) left-shiftedE2 bits; vacated bits are O-filledlhe
value of “E1>>E2" is E1 (interpreted as a two’s complement, 16-bit quamtitthymeticallyright-shiftedE2 bit po-
sitions. Vacatedbits arefilled by a copy of the sign bit of E1. [Note: the useof arithmeticratherthanlogical shift
does not survive transportation between machines.]

7.6 Relational operators

Therelationaloperatorggroupleft-to-right, but this fact is not very useful; *a<b<c” doesnot meanwhatit seems
to.

7.6.1 expressiorx expression
7.6.2 expressiorr expression
7.6.3 expressiork= expression
7.6.4 expressiorr= expression

Theoperators< (lessthan),> (greaterthan),<= (lessthanor equalto) and>= (greaterthanor equalto) all yield 0
if the specifiedrelationis falseandl if it is true. Operandconversions exactlythe sameasfor the + operatorex-
ceptthatpointersof anykind maybe comparedtheresultin this casedepend®n therelativelocationsin storageof
the pointed-to objectdt does not seem to be very meaningful to compare pointers with integers other than 0.

7.7 Equality operators

7.7.1 expression= expression
7.7.2 expression= expression

The== (equalto) andthe!= (not equalto) operatorsaareexactlyanalogoudo therelationaloperatorexceptfor
their lower precedencdThus “a<b == c<d” is 1 whenever a<b and c<d have the same truth-value).

7.8 expressior& expression

The & operatorgroupsleft-to-right. Both operandsnustbeint or char ; theresultis anint which is the bit-
wise logicaland function of the operands.

C Reference Manual - 8

7.9 expressiort expression

The” operatorgroupsleft-to-right. The operandsnustbeint or char ; theresultis anint which is the bit-
wise exclusiveor function of its operands.

7.10 expression expression

The| operator groups left-to-righfThe operands must li@ or char ; theresultis anint whichis thebit-wise
inclusiveor of its operands.

7.11 expressior&& expression

The && operatorreturnsl if both its operandsare non-zero,0 otherwise. Unlike &, && guaranteeseft-to-right
evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.12 expression|| expression

The || operatoreturnsl if eitherof its operandss non-zeroandO otherwise. Unlike |, || guaranteegeft-to-right
evaluation; moreover, the second operand is not evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.13 expressior? expression expression

Conditionalexpressiongroupleft-to-right. Thefirst expressions evaluatedandif it is non-zerotheresultis the
value of the secondexpressionptherwisethat of third expression.If the typesof the secondandthird operandare
the same, the result has their common type; otherwise the same conversion rulesapplforOnly oneof the sec-
ond and third expressions is evaluated.

7.14 Assignment operators

Therearea numberof assignmenbperatorsall of which groupright-to-left. All requirean Ivalue astheir left
operandandthetype of anassignmenéxpressioris thatof its left operand. The valueis the valuestored in thdeft
operand after the assignment has taken place.

7.14.1 Ivalue= expression

The valueof the expressiomeplaceghat of the objectreferredto by thelvalue. The operandsieednot havethe
sametype, but bothmustbe int , char , float , double , or pointer. If neitheroperands a pointer,the assign-
ment takes place as expected, possibly preceded by conversion of the expression on the right.

When bothoperandsreint or pointersof anykind, no conversiorevertakesplace;the value of the expression
is simply stored into theobject referred to by the Ivalu@hus it is possible to generate pointers which will cause ad-
dressing exceptions when used.

7.14.2 Ivalue=+ expression
7.14.3 Ivalue=— expression
7.14.4 Ivalue=+ expression
7.14.5 Ivalue=/ expression
7.14.6 Ivalue=% expression
7.14.7 lvalue=>> expression
7.14.8 Ivalue=<< expression
7.14.9 Ivalue=& expression
7.14.10lvalue=" expression
7.14.11lvalue=| expression
The behavior of an expressionof the form “E1 =op E2” may be inferred by taking it as equivalentto
“E1l = E1 op E2”; however,E1 is evaluatedbnly once. Moreover,expressiondike “i =+ p” in which a pointeris
added to an integer, are forbidden.

C Reference Manual - 9

7.15 expression expression

A pair of expressionseparatedy a commais evaluatedeft-to-right andthe value of the left expressiornis dis-
carded. The type andvalue of the result arethe type andvalue of the right operand. This operatorgroupsleft-to-
right. It shouldbe avoidedin situationswherecommais given a specialmeaning for examplein actualarguments
to function calls (§87.1.6) and lists of initializers (810.2).

8. Declarations

Declarationsare usedwithin function definitions to specify the interpretationwhich C givesto eachidentifier;
they do not necessarily reserve storage associated with the idel#@arations have the form

declaration:
decl-specifiers declarator-lig} ;

The declaratordn the declarator-listcontainthe identifiers being declared. The decl-specifiersonsistof at most
one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, and register declarationsalso serveasdefinitionsin that they causean appropriate
amountof storageo bereserved.In theextern casetheremustbe anexternaldefinition (seebelow)for the given
identifiers somewhere outside the function in which they are declared.

Thereare some severeestrictionson register identifiers: therecanbe at most 3 registeridentifiersin any
function,andthetype of aregisteridentifier canonly be int, char, or pointer(not float, double, struc-
ture, function, or array). Also the address-obperator & cannotbe appliedto suchidentifiers. Exceptfor thesere-
strictions(in returnfor which oneis rewardedwith faster,smallercode),registeridentifiersbehaveasif theywere
automatic. In fact implementations of C are free to treagister ~ as synonymous withauto.

If the sc-specifier is missing from a declaration, it is generally takenaatbe.

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

Thestruct specifieris discussedn 88.5. If the type-specifielis missingfrom a declarationjt is generallytaken
to beint .

C Reference Manual - 10

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declarator-list:
declarator
declarator, declarator-list

The specifiersin the declarationindicatethe type and storageclassof the objectsto which the declaratorgefer.
Declarators have the syntax:

declarator:
identifier
* declarator
declarator()
declarator[constant-expressign]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators

Eachdeclaratoiis takento be anassertiorthatwhena constructionof the sameform asthe declaratorappearsn
anexpressionit yieldsanobjectof theindicatedtype and storage clasEach declarator contains exactly one identi-
fier; it is this identifier that is declared.

If anunadorneddentifier appearss adeclaratorthenit hasthetypeindicatedby the specifierheadingthe decla-
ration.

If a declarator has the form

* D

for D a declaratorthenthe containedidentifier hasthe type “pointer to ...”, where" ..." is the type which the

identifier would have had if the declarator had been simply D.
If a declarator has the form

D()

then the containedidentifier hasthe type “function returning...
would have had if the declarator had been simply D.

A declarator may have the form

, Where" ..." is the type which the identifier

D[constant-expression]
or
D[]

In the first case theconstantexpressioris an expressiorwhosevalueis determinableat compiletime, andwhose
typeis int. in the secondthe constantl is used. (Constantexpressionsre definedpreciselyin 815.) Sucha
declaratormakesthe containedidentifier havetype “array.” If the unadornedieclaratorD would specify a non-
arrayof type*. ..”, thenthedeclarator'D[i]” yieldsa 1-dimensionahrraywith ranki of objectsof type “...”. If

the unadorneddeclaratorD would specify an n-dimensionalarray with rank i, xi,x...xi_, thenthe declarator
“D[i.,,]" yields an (n+1) -dimensional array with rankxi,x...xi xi_.

An arraymay be constructedrom oneof the basictypes,from a pointer,from a structure,or from anotherarray
(to generate a multi-dimensional array).

Finally, parenthesem declaratorslo not alterthe type of the containeddentifier exceptinsofarasthey alter the
binding of the components of the declarator.

Not all the possibilitiesallowedby the syntaxaboveareactuallypermitted. Therestrictions arasfollows: func-
tionsmay not returnarrays,structuresor functions,althoughthey mayreturnpointers tosuchthings;thereareno ar-
rays of functions,althoughtheremay be arraysof pointers tofunctions. Likewise a structuremay not containa
function, but it may contain a pointer to a function.

C Reference Manual - 11

As an example, the declaration

inti, *ip, £(), fip(), (- *pfi) ();
declaresanintegeri, a pointerip to aninteger,a functionf returninganinteger,a functionfip returninga pointerto
an integer, and a pointpfi to a function which returns an integeklso

float fa[17], *afp[17];
declares an array fibat numbers and an array of pointergle@t numbers.Finally,

static int x3d[3][5][7];

declaresa staticthree-dimensionarray of integers,with rank 3x5x7. In completedetail, x3d is an array of three
items:eachitemis anarrayof five arrays;eachof thelatterarraysis anarrayof sevenintegers. Any of the expres-
sions“x3d”, “x3d[i]", “x3d[i][j]", “x3d[i][jl k]" mayreasonablyappearin an expression.The first three
have type “array”, the last has tyjpg .

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { type-decl-list }
Thetype-decl-lisis a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A typedeclaratioris just a declarationwhich doesnot mentiona storageclass(the storageclassmember of struc-
ture” here being understood by context).

type-declaration:
type-specifier declarator-list

Within the structure the objectsdeclaredhaveaddressesvhich increaseastheir declarationsarereadleft-to-right.
Eachcomponenbf a structurebeginson anaddressindpoundaryappropriateo its type. OnthepPbr-11theonly re-
quirementis that non-characterbegin on a word boundary;therefore,there may be 1-byte, unnamedholesin a
structure, and all structures have an even length in bytes.

Another form of structure specifier is
struct identifier { type-decl-list }

This form is the sameasthe onejust discussedexceptthat the identifier is rememberedsthe structuretag of the
structurespecifiedby the list. A subsequendeclarationmay thenbe given usingthe structuretag but without the
list, as in the third form of structure specifier:

struct identifier

Structuretagsallow definition of self-referentialstructuresthey also permit the long part of the declarationto be
givenonceandusedseverakimes. It is howeverabsurdio declare a structure which contains an instance of itself, as
distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully, is

struct tnode {

char tword[20];

int count;

struct tnode *|eft;
struct tnode *right;

h

which contains an array of 20 characters, an integer, and two pdarg@rslar structures.Oncethis declaratiorhas

C Reference Manual - 12

been given, the following declaration makes sense:
struct tnode s, *Sp;

which declaresto be a structure of the given sort apdo be a pointer to a structure of the given sort.

The namesof structuremembersandstructuretags maybethe sameasordinaryvariables sincea distinctioncan
be madeby context. However,namesf tagsandmemberanustbe distinct. The samemembemamecanappealn
differentstructuresonly if thetwo membersare of the sametype andif their origin with respecto their structureis
the same; thus separate structures can share a common initial segment.

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression

Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

if (expressior) statement
if (expressior) statemenelse statement

In both caseghe expressions evaluatedandif it is non-zerothe first substatemeris executed.In the secondcase
the secondsubstatemeris executedf the expressioris 0. As usualthe “else” ambiguityis resolvedby connecting
anelse with the last encountered elseléss

9.4 While statement
Thewhile statement has the form

while (expressior) statement

The substatemenis executedrepeatedlyso longasthe value of the expressiorremainsnon-zero. The testtakes
place before each execution of the statement.

9.5 Do statement
Thedo statement has the form

do statementvhile (expressior) ;

The substatemernis executedepeatedlyuntil the value of the expressiorbecomesero. The testtakesplaceafter
each execution of the statement.

C Reference Manual - 13

9.6 For statement
Thefor statement has the form

for (expression-},; expression-g ; expression-3) statement
This statement is equivalent to

expression-1;

while (expression-2{
statement
expression-3

}

Thusthefirst expressiorspecifiesinitialization for the loop; the secondspecifiesa test,made beforeachiteration,
suchthattheloop is exitedwhenthe expressiorbecome; thethird expressiortypically specifiesanincrementa-
tion which is performed after each iteration.

Any or all of the expressionsnay be dropped. A missingexpression-2Znakestheimplied while clauseequiva-
lent to “while(1)”; other missing expressions are simply dropped from the expansion above.

9.7 Switch statement

Theswitch statementausegontrolto betransferredo oneof severalktatementslependingon the valueof an
expression.It has the form

switch (expressior) statement

The expressiomustbeint or char . The statements typically compound. Eachstatementvithin the statement
may be labelled with case prefixes as follows:

case constant-expression

wherethe constanexpressiormustbeint or char . No two of the caseconstantsn a switch may havethe same
value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form
default :

When theswitch statement is executed, its expression is evaluated and compared with eacinstasdén anun-
definedorder. If oneof the caseconstantss equalto thevalueof the expressiongontrolis passedo thestatement
following the matchedcaseprefix. If no caseconstantmatcheshe expressionandif thereis a default prefix,
control passeso theprefixedstatement.In theabsencef adefault prefix noneof the statementin the switchis
executed.

Case or default prefixes in themselves do not alter the flow of control.

9.8 Break statement
The statement

break ;

causegerminationof the smallestenclosingwhile , do, for , or switch statementrontrol passego the state-
ment following the terminated statement.

9.9 Continue statement
The statement

continue ;

causesontrolto passto theloop-continuatiorportion of the smallestenclosingwhile , do, or for statementthat
is to the end of the loopgMore precisely, in each of the statements

C Reference Manual - 14

while (...){ do { for(...){
corit.ir.r ; conti.ri:.; contin.: .; .
} }while (...); }

acontinue is equivalent to “goto contin”.

9.10 Return statement
A function returns to its caller by means of teurn statement, which has one of the forms

return ;
return (expressior) ;

In the first caseno valueis returned. In the secondcase the value of the expressioris returnedto the caller of the
function. If requiredtheexpression is converted, as if by assignment, to the type of the function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement
goto expression

The expressiorshouldbe a label (§89.12,14.4) or an expressiorof type “pointer to int " which evaluatedo a la-
bel. It is illegal to transferto a label not locatedin the currentfunction unlesssomeextra-languaggrovisionhas
been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form
identifier:

which serve to declare the identifier as a laihdbre details on the semantics of labels are given in §14.4 below.

9.13 Null statement
The null statement has the form

A null statements useful tocarryalabeljust before the'}’ of acompoundstatemenbr to supplya null bodyto a
looping statement such aile .

10. External definitions

A C programconsistsof a sequencef externaldefinitions. Externaldefinitionsmay be givenfor functions,for
simplevariables andfor arrays. Theyareused botho declareandto reservestoragefor objects. An externaldefi-
nition declaresan identifier to havestorageclassextern anda specifiedtype. The type-specifier(§8.2) may be
empty, in which case the type is taken tarite .

10.1 External function definitions
Function definitions have the form

function-definition:
type-specifief, function-declarator function-body

A functiondeclaratoiis similar to a declaratoffor a “function returning...” exceptthatit lists theformal parameters
of the function being defined.

function-declarator:
declarator(parameter-list,)

parameter-list:

C Reference Manual - 15

identifier
identifier, parameter-list

The function-body has the form

function-body:
type-decl-list function-statement

The purposeof the type-decl-listis to give the typesof the formal parameters.No otheridentifiers shouldbe de-
clared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

function-statement:
{ declaration-list , statement-list }

A simple example of a complete function definition is

int max (a, b, c)

inta, b, c;

{ .
int m;
m= (a>b)?a:b;
retur n(m>c?m:c);

}

Here"int” is thetype-specifier;'max(a, b, ¢)” is the function-declaratoryint a, b, ¢;” is the type-decl-listfor the
formal parameters; “{.. }" is the function-statement.

C convertsall float actualparameterso double , so formal parametersleclaredfloat havetheir declara-
tion adjustedo readdouble . Also, sinceareferencdo anarrayin any context(in particularasanactualparame-
ter) is takento meana pointerto thefirst elementof the arraydeclaration®f formal parametersleclared‘array of
... areadjustedto read"pointer to ..."”. Finally, becausaeitherstructuresor functionscanbe passedo afunc-
tion, it is uselesdo declarea formal parameteto be a structureor function (pointersto structuresor functionsareof
course permitted).

A freereturn statemenis suppliedat the endof eachfunctiondefinition, so runningoff theendcausesontrol,
but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

data-definition:
extern . type-specifigy, init-declarator-list, ;

Theoptional extern specifieris discussedn § 11.2. If given,theinit-declarator-lisis a comma-separatdist of
declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializer,,
Each initializer represents the initial value for the corresponding object being defined (and declared).
initializer:
constant
{ constant-expression-list }

C Reference Manual - 16

constant-expression-list:
constant-expression
constant-expression constant-expression-list

Thusan initializer consistsof a constant-value@xpressionpr comma-separatelist of expressionsinside braces.
Thebraces maye dropped when the expression is just a plain constéetexact meaning of a constant expression
is discussed in §15The expression list is used to initialize arrays; see below.

Thetype of theidentifier beingdefinedshouldbe compatiblewith the type of the initializer: a double constant
may initialize a float or double identifier; a non-floating-pointexpressiormay initialize anint , char , or
pointer.

An initializer for anarraymay containa comma-separatdist of compile-timeexpressions.The lengthof the ar-
ray is takento be the maximumof the numberof expressionsn the list andthe square-bracketedonstantin the
array’s declarator. This constantmay be missing, inwhich casel is used. The expressionsnitialize successive
memberof thearraystartingat the origin(subscrip) of the array. The acceptablexpressiongor anarrayof type
“array of ...” arethe sameasthosefor type“...”. As aspecialcase a singlestring may be givenastheinitializer
for an array othar s; in this case, the characters in the string are taken as the initializing values.

Structurescanbe initialized, but this operationis incompletelyimplementedand machine-dependenBasically
the structurels regardedhs asequencef wordsandtheinitializers areplacedinto thosewords. Structureinitializa-
tion, usinga comma-separatdibt in bracesjs safeif all the membersf the structureareintegersor pointersbutis
otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A completeC programneednot all be compiledat the sametime: the sourcetext of the programmay be keptin
severafiles, andprecompiledoutines mayeloadedfrom libraries. Communicatioramongthe functionsof a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore therearetwo kinds of scopeto considerfirst, what may be calledthe lexical scopeof an identifier,
whichis essentiallytheregion of a program during which it may be used without drawing “undefined identifier” di-
agnosticsand second the scopeassociatedvith externalidentifiers,which is characterizedby the rule thatrefer-
ences to the same external identifier are references to the same object.

11.1 Lexical scope

C is notablock-structuredanguagethis mayfairly be consideredh defect. The lexical scopeof namesdeclared
in externaldefinitions extendsfrom their definition throughthe end of the file in which they appear. The lexical
scope of names declared at the head of functions (either as formal parameters or in the declarations lséatding the
ments constituting the function itself) is the body of the function.

It is anerrorto redeclaradentifiersalreadydeclared in theurrentcontext,unlessthe new declarationspecifies
the same type and storage class as already possessed by the identifiers.

11.2 Scope of externals

If afunctiondeclaresanidentifier to be extern , thensomewhereamongthe files or librariesconstituting the
completeprogramtheremustbe anexternaldefinition for theidentifier. All functionsin a givenprogramwhich re-
fer to thesameexternalidentifier referto thesameobject,so caremustbe takenthatthe type andextentspecifiedin
the definition are compatible with those specified by each function which references the data.

In PDP-11 C, it is explicitly permitted for(compatible)externaldefinitions of the sameidentifier to be presentin
severalof the separately-compilegdiecesof a completeprogram,or eventwice within the sameprogramfile, with
the important limitation that the identifier may be initialized in at most one of the definitioimheroperatingsys-
tems,however the compilermustknow in just which file the storagefor theidentifier is allocated andin which file
theidentifier is merelybeingreferredto. In theimplementation®f C for suchsystems, thappearancef the ex-
tern keywordbeforeanexternaldefinition indicatesthat storagefor the identifiersbeingdeclaredwill beallocated
in anotheffile. Thusin amulti-file program,anexternaldatadefinition withoutthe extern specifiermustappear
in exactlyoneof thefiles. Any otherfiles which wish to give an externaldefinition for the identifier mustinclude
the extern in the definition. The identifier can be initialized only in the file where storage is allocated.

In PDP-11 C none of this nonsense is necessary aneéttern specifier is ignored in external definitions.

C Reference Manual - 17

12. Compiler control lines

Whenal line of a C programbeginswith the charactet, it is interpretednhot by the compileritself, but by a pre-
processomvhich is capableof replacinginstancesof given identifierswith arbitrarytoken-stringsand of inserting
namedfiles into thesourceprogram. In orderto causethis preprocessoto beinvoked,it is necessaryhatthe very
first line of the program begin with. Since null lines are ignored by the preprocessor, this line need contain no oth-
er information.

12.1 Token replacement
A compiler-control line of the form

define identifier token-string

(note:no trailing semicolon)causeshe preprocessaio replacesubsequeninstancef the identifier with the given
string of tokens(exceptwithin compilercontrollines). The replacementoken-stringhascommentsemovedfrom
it, and it is surrounded with blank&lo rescanning of the replacement stringtiempted.This facility is mostvalu-
able for definition of “manifest constants”, as in

define tabsize 100

|nt table[tabsize];

12.2 File inclusion

LargeC programftencontainmanyexternaldatadefinitions. Sincethelexical scopeof externaldefinitionsex-
tendsto theendof the programfile, it is good practiceto put all the externaldefinitionsfor dataat the startof the
programfile, so thatthe functionsdefinedwithin the file neednot repeattediousand error-pronedeclarationgor
eachexternalidentifier they use. It is also useful tgout a heavily usedstructuredefinition at the startand useits
structuretag todeclarethe auto pointers to thestructureusedwithin functions. To further exploit this technique
when a large C program consists of several files, a compiler control line of the form

include " filenamé'

results in the replacement of that line by the entire contents of tiiéefil@me

13. Implicit declarations

It is notalwaysnecessaryo specifyboththe storageclassandthe type of identifiersin a declaration.Sometimes
the storageclassis suppliedby the context: inexternaldefinitions,andin declarationof formal parameterand
structure memberdn a declaration inside a function, if a storage class but no type is tiiedtentifier is assumed
tobeint ;if atype but no storage class is indicated, the identifier is assumeatbdbe An exception to the latter
rule is madefor functions,sinceauto functionsare meaninglesgC being incapableof compiling codeinto the
stack). If the type of an identifier is “function returning ...”, it is implicitly declared todxtern

In an expressionan identifier followed by (andnot currently declareds contextuallydeclared tdbe “function
returningint ”

Undefinedidentifiers not followed by (are assumedo be labelswhich will be definedlater in the function.
(Sincea labelis not an Ivalue, this accountdor the “Lvalue required” error messagesometimesoticedwhenan
undeclared identifier is usedNaturally, appearance of an identifier as a label declares it as such.

For somepurposest is best toconsiderformal parametergasbelongingto their own storageclass. In practice,C
treatsparameterssif they wereautomatic(exceptthat, asmentionedabove formal parametearraysandfloat s
are treated specially).

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

C Reference Manual - 18

14.1 Structures

Thereareonly two thingsthatcanbe donewith a structure:pick out oneof its membergby meansof the . or
—> operators)pr takeits addresgby unary&). Otheroperationssuchasassigningfrom or to it or passingt as a
parameterdrawanerrormessageln the future, it is expectedhattheseoperationsput notnecessarilyothers,will
be allowed.

14.2 Functions

Thereareonly two thingsthat canbe donewith a function: call it, or takeits address.If the nameof a function
appearsn anexpressiomot in the function-namepositionof a call, a pointerto thefunctionis generated.Thus,to
pass one function to another, one might say

int f();
a(f);
Then the definition off might read

g (funcp)
int(=funcp)();
{

(«funcp) ();
} .

Notice thaff was declared explicitly in the calling routine since its first appearance was not folloWed by

14.3 Arrays, pointers, and subscripting

Everytime anidentifier of arraytype appearsn anexpressionit is convertednto a pointerto thefirst memberof
the array.Becausef this conversionarraysarenotlvalues. By definition, the subscriptoperator [] is interpreted
in such a way that “E1[E2]" is identicab “ «((E1)+ (E2))”. Becausef theconversiorruleswhich applyto +, if
Elis anarrayandE2 aninteger,thenE1[E2] refersto the E2-thmemberof E1. Therefore despiteits asymmetric
appearance, subscripting is a commutative operation.

A consistentrule is followed in the caseof multi-dimensionalarrays. If E is an n-dimensionalarray of rank
i xjx...xk, then E appearingn an expressionis convertedto a pointerto an (n—1)-dimensionalarray with rank
j %...xk. If thex operatorgitherexplicitly or implicitly as aresultof subscriptingjs appliedto this pointer,there-
sult is the pointed-tont-1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider
int x[3][5];

Herex is a 3x5 arrayof integers. Whenx appearsn anexpressionit is convertedo a pointerto (the first of three)
5-memberedhrraysof integers. In the expressiori’x[i]”, whichis equivalentto = (x+i)”, X is first convertedo a
pointerasdescribedtheni is convertedo thetype of x, which involves multiplying i by the lengththe object to
which the pointer points, namely5 integerobjects. The resultsareaddedandindirectionappliedto yield an array
(of 5 integers)which in turn is convertedto a pointerto thefirst of the integers. If thereis anothersubscriptthe
same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wlastsubscriptvariesfastestiandthatthefirst subscript
in the declaratiorhelpsdeterminethe amountof storageconsumedy an arraybut playsno otherpartin subscript
calculations.

14.4 Labels

Labels do not have a type of their own; they are treated as having type “aimty'of Labelvariablesshouldbe
declared‘pointer to int ”; beforeexecutionof agoto referringto thevariable,alabel (or anexpressiorderiving
from a label) should be assigned to the variable.

Label variables are a bad idea in generalsthiecch statement makes them almost always unnecessary.

C Reference Manual - 19

15. Constant expressions

In severalplacesC requiresexpressionsvhich evaluateto a constantafter case, asarraybounds,andin ini-
tializers. In thefirst two casesthe expressiorcaninvolve only integerconstantscharacteconstantsand sizeof
expressions, possibly connected by the binary operators

+ =% [% & | T << >>

or by the unary operators

-~

Parentheses can be used for grouping, but not for function calls.

A bit morelatitudeis permitted forinitializers; besidesonstanexpressiongsdiscussedbove, oneanalso ap-
ply theunary& operatorto externalscalarsandto externalarrays subscripted with a constant expressidre unary
& canalsobe appliedimplicitly by appearancef unsubscriptedxternalarrays. The rule hereis that initializers
must evaluate either to a constant or to the address of an external identifier plus or minus a constant.

16. Examples.
Theseexamplesareintendedto illustrate sometypical C constructionsaswell as aserviceablestyle of writing C
programs.

16.1 Inner product
This function returns the inner product of its array arguments.

double inner(v1, v2, n)
double vi[], v2[];

double sum;
inti;
sum = 0.0;
for (i=0;i<n;i ++)
sum =+ v1[i] = v2[i];
return (sum);

}

The following versionis somewhamoreefficient, but perhaps little lessclear. It usesthe factsthat parametear-
rays are really pointers, and that all parameters are passed by value.

double inner(v1, v2, n)
double =*v1, =xv2;

{
double sum;
sum=0.0;
while(n —)
sum =+ *v1++ * xV2++;
return (sum);
}

Thedeclarationgor the parameterare reallyexactlythe sameasin thelastexample. In thefirst casearraydeclara-
tions“[1" weregivento emphasizehatthe parametersvould be referredto asarrays;in the secondpointerdec-
larations were given because the indirection operator and ++ were used.

16.2 Tree and character processing

Hereis acompleteC program(courtesyof R. Haight) which readsa document@andproducesnalphabetizedist
of wordsfound thereintogetherwith the numberof occurrence®f eachword. The methodkeepsa binary tree of
words suchthat the left descendantree for eachword hasall the words lexicographicallysmallerthan the given
word, and the right descendant has all the larger w@dth the insertion and the printing routine are recursive.

The programcalls the library routinesgetcharto pick up charactersaand exit to terminateexecution. Printf is

C Reference Manual - 20

called to print the results according to a format strigzersion ofprintf is given below(§16.3).

Becausall the externaldefinitionsfor dataaregivenatthetop, noextern declarationsarenecessarwithin the
functions. To staywithin the rules,a type declarationis given for eachnon-integerfunction whenthe function is
used before it is defineddowever, since all such functions return pointensch aresimply assignedo otherpoint-
ers,no actualharmwould resultfrom leavingout the declarationsthe supposedlynt functionvalueswould be as-

signed without error or complaint.

define nwords 100
define wsize 20
struct tnode {
char tword [wsize];
int count;;
struct thode
struct tnode

~

*left;
*right;
};

struct tnode space [nwords];
int nnodes nwords ;
struct tnode *Spacep space;
struct tnode *freep;
| *
* The main routine reads words until end-of-file
* "tree" is called to sort each word into the tree.

/
/
/

* number of different words
* max chars per word
* the basic structure

* %k X F

*/
*/
*/

the words themselves */
number of remaining slots
next available slot

free list */

*/
*/

("\0" returned from "getchar")

*/
main ()
struct tnode *top, xtree();
char c, word [wsize];
inti;
i=top=0;
while (c=getchar())
if ("a’<=c && c<="7" | ‘A<=c&&c<="Z") {
if (i<wsize -1)
word[i ++] =c;
} else
it (i) {
word[i ++] ="\0";
top = tree (top, word) ;
i=0:
tprint (top) ;
}
| %
» The central routine. If the subtree pointer is null, allocate a new node for it.
= If the new word and the node’s word are the same, increase the node’s count.
» Otherwise, recursively sort the word into the left or right subtree according
* as the argument word is less or greater than the node’s word.

*/
struct thode
struct thode
char word[];

*tree (p, word)
*p;

struct thode
int cond;

xalloc();

_/* Is pointer null? */
it (p ==0) {

p=alloc();

C Reference Manual - 21

copy(word, p —>tword);
p—>count=1;
p—>right=p —>left=0;

retur n(p);
/ = Is word repeated? */
if ((cond=compar (p —>tword, word)) == 0) {
p—>count ++;
retur n(p);
/ = Sort into left or right */
if (cond<0)
p—>left = tree (p —>left, word) ;
else
p—>right = tree (p —>right, word) ;
retur n(p);

}

| *
* Print the tree by printing the left subtree, the given node, and the right subtree
*/

tprin t(p)
struct tnode *P;
while (p) {

tprint(p —>left);
printf ("%d: %s\n", p —>count, p —>tword);
p=p -—>right;

}

| *

* String comparison: return number (>,=,<) 0
* accordingassl (>, =<) s2.
*/

compar(sl, s2)

char =*sl, =*s2;

{ |

intcl, c2;

while ((cl = *S1++) == (c2= *S2++))

if (c1 ==\0")
retur n(0);

return(c2 -—cl);
}
| *

* String copy: copy sl into s2 until the null
* character appears.
*/

copy (sl, s2)

char =xsl, =s2;

while (*S2++ = *sl++);

~

b

Node allocation: return pointer to a free node.
Bomb out when all are gone. Just for fun, there
is a mechanism for using nodes that have been
freed, even though no one here calls "free."

*

*/
struct tnode *alloc ()

C Reference Manual - 22

{
struct tnode *1;
if (freep) {
t =freep;
freep = freep —>left;
retur n(t);
}
if (——nnodes<0) {
printf ("Out of space\n");
exit();
return (spacep ++);
}
| %
» The uncalled routine which puts a node on the free list.
*/
free (p)
struct tnode *P;
{
p—>left = freep;
freep =p;
}

To illustrate a slightly differenttechniqueof handlingthe sameproblem,we will repeatfragmentsof this example
with the treenodestreatedexplicitly asmembersof anarray. The fundamentathanges to dealwith the subscript
of the array member under discussion, instead of a pointerThdtstruct declaration becomes

struct tnode {
char tword [wsize];

int count;
int left;
int right;
h
andalloc becomes
alloc ()
int t;
t= ——-nnodes;
if (t<=0) {
printf ("Out of space\n");
exit();
retur n(t);
}

Thefree stuff hasdisappearetbecauséf we dealwith exclusivelywith subscriptssomesortof maphasto be kept,
which is too much trouble.

Now thetreeroutine returns a subscript also, and it becomes:

tree (p, word)
char word[];

int cond;

it (p ==0) {
p=alloc();
copy(word, spac e[p] .tword);

C Reference Manual - 23

spac e[p] .count=1;
spac e[p] .right=spac e[p] .left=0;

retur n(p);

if ((cond=compar (spac e[p] -tword, word)) == 0) {
spac e[p] .count ++;
retur n(p);

}
if (cond<0)

spac e[p] .left =tree(spac e[p] .left,word);
else

spac e[p] .right=tree(spac e[p] .right, word);
retur n(p);

}

Theotherroutinesarechangedsimilarly. It mustbe pointedout thatthis versionis noticeablylessefficient thanthe
first becauseof the multiplicationswhich must be doneto computean offsetin spacecorrespondingo the sub-
scripts.

The observation that subscrigibke “a[i]”) are less efficient than pointer indirecti¢like *“ *ap™) holdstrue
independentlyof whetheror not structuresareinvolved. Thereareof coursemany situationswheresubscriptsare
indispensable, and others where the loss in efficiency is worth a gain in clarity.

16.3 Formatted output

Hereis a simplified versionof the printf routine,which is availablein the C library. It acceptsa string (character
array) asfirst argumentandprints subsequerdrgumentsccording to specifications contained in this format string.
Most charactersn the string aresimply copiedto theoutput;two-charactesequencebeginningwith “%” specify
that the next argument should be printed in a style as follows:

%d decimal number

%0 octal number

%c Ascll character, or 2 characters if upper character is not null
%s string (null-terminated array of charactérs

%f floating-point number

The actualparametergor eachfunction call arelaid out contiguouslyin increasingstoragelocations;therefore,a
functionwith a variablenumberof argumentsnay takethe addresof (say) its first argumentandaccess thee-
mainingargumentsy useof subscripting(regardingthe argumentsasanarray) or by indirectioncombinedwith
pointer incrementation.

If in suchasituationthe argumentdiavemixedtypes,or if in generalonewishesto insistthatanlvalue shouldbe
treatedashavinga giventype,then struct declarationdike thoseillustratedbelow will be useful. It shouldbe
evident, though, that such techniques are implementation dependent.

Printf dependsaswell onthefactthat char andfloat argumentarewidenedrespectivelytoint anddou-
ble , so thereare effectively only two sizesof argumentdo dealwith. Printf callsthe library routinesputcharto
write out single characters aftdato dispose of floating-point numbers.

printf (fmt, args)

char fmt[];

{
char =s;
struct { char *x charpp; };
struct { double xdoublep; };
int xap, x, Cc;

ap = &args; /= argument pointer */
for (;:){
while ((¢ = »fmt ++) 1="%") {
if(c =="\0
return;

C Reference Manual - 24

putcha r(c);

switch (c = *fmt ++) {
/= decimal «/
case ‘d’:
X= *ap++;
if(x<0) {
X= =X
if(x<0) { / * is — infinity
printf (" -32768");
continue;

}
putchar(®~ -7);

print d(x);
continue;

/= octal =/

case 0":
printo(*ap++);
continue;

/ = float, double */

case f:
/ = let ftoa do the real work */
ftoa(ap.doublep ++);
continue;

/ = character */

case ‘c’;
putchar(*ap++);
continue;

[+ string */

case ’'s’:
s = =ap.charpp ++;
while (¢ = *S++)

putcha r(c);

continue;

}
putcha r(c);

}
}
| %
= Print n in decimal ; n must be non-negative
*/
print d(n)
{ |
inta;
if (a=n/10)
print d(a);
putchar (n%210 + 0");
}
| %
= Print n in octal, with exactly 1 leading 0
*/
print o(n)

if (n)
printo ((n>>3)&017777);
putchar ((n&07)+07);

C Reference Manual - 25

REFERENCES

Johnsors. C.,andKernighanB. W. “The Programmind-anguageB.” Comp.Sci. Tech.Rep.#8.,Bell Lab-
oratories, 1972.

Ritchie,D. M., and ThompsonK. L. “The uNix Time-sharingSystem.” C. ACM 7, 17, July, 1974, pp.
365-375.

PetersorT. G.,andLesk,M. E. “A User'sGuideto theC Languageon the IBM 370.” InternalMemoran-
dum, Bell Laboratories, 1974.

Thompson, K. L., and Ritchie, D. MNIX Programmer’s Manual Bell Laboratories, 1973.
Lesk, M. E., and Barres, B. AThe ccosC Library.” Internal memorandum, Bell Laboratories, 1974.

KernighanB. W. “Programmingin C- A Tutorial.” UnpublishednternalmemorandumBell Laboratories,
1974.

C Reference Manual - 26

APPENDIX 1
Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
— expression
I expression
~ expression
++ lvalue
——lvalue
Ivalue++
Ivalue——
sizeof expression
expression binop expression
expressior? expression expression
Ivalue asgnop expression
expression expression

primary:
identifier
constant
string
(expression
primary (expression-li%)
primary[expressior
Ivalue. identifier
primary > identifier
Ivalue:
identifier
primary[expressior
Ivalue. identifier
primary > identifier
* expression
(Ivalue)

The primary-expression operators
o n . >
have highest priority and group left-to-righthe unary operators
& - ' _ ++ — sizeof

havepriority below the primary operatorsbut higherthanany binary operator,and groupright-to-left. Bi-
nary operators and the conditional operator all group left-to-right, and have priority decreasing as indicated:

binop:
* / %
+ -_—
>> <<
< > <= >=

C Reference Manual - 27

AN

I
&&

?
Assignment operators all have the same priority, and all group right-to-left.

asgnop:
= =+ =— =x =/ =0 =>> =<< =& =N = |

The comma operator has the lowest priority, and groups left-to-right.

2. Declarations.

declaration:
decl-specifiers declarator-ligf ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

declarator-list:
declarator
declarator, declarator-list

declarator:
identifier
* declarator
declarator()
declarator[constant-expressign]
(declarator)

type-decl-list:
type-declaration
type-declaration type-decl-list

type-declaration:
type-specifier declarator-list

3. Statements.

statement:
expression
{ statement-list }

C Reference Manual - 28

if (expressior) statement
if (expressior) statemenelse statement

while (
for (

expressior) statement
expressiog),; expressiog, ; expressiop),) statement

switch (expressior) statement
case constant-expression statement
default : statement

break ;

continue ;

return ;

return (expressior) ;

goto expression
identifier: statement

statement-list:

statement
statement statement-list

4. External definitions.

program:

external-definition
external-definition program

external-definition:

function

-definition

data-definition

function-definition:
type-specifief, function-declarator function-body

function-declarator:
declarator(parameter-lis,,)

parameter-list:

identifier
identifier, parameter-list

function-body:

type-decl-list function-statement

function-statement:
{ declaration-list, statement-list }

data-definition:
extern

ont typE-specifiey, init-declarator-list, , ;

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:

declarator initializelg)pt

initializer:

constant
{ constant-expression-list }

C Reference Manual - 29

constant-expression-list:
constant-expression
constant-expression constant-expression-list

constant-expression:
expression

5. Preprocessor
define identifier token-string

include " filenameé'

C Reference Manual - 30

APPENDIX 2
Implementation Peculiarities

This Appendixbriefly summarizeshe differencesbetweerthe implementation®f C on the PDP-11 underunix and
ontheHis 6070underccos it includessomeknown bugsin eachimplementation.Eachentryis keyedby anindi-

cator as follows:

o cCcQ

hard to fix

Gcosversion should probably be changed
UNIX version should probably be changed
Inherent difference likely to remain

This list was prepared by M. E. Lesk, S. C. Johnson, E. N. Pinson, and the author.

A. Bugs or differences from C language specifications

hg
hg
g
hg
u

hug

A.1)
A.2)

A.3)
A.4)
A.5)

A.6)

Gcosdoes not do type conversions in “?:".

Gcoshasabuginint andreal comparisonsthe numbersarecomparedy subtractionand
the difference must not overflow.

Whenxis afloat , the construction “test 2x : X" is illegal onGcos

“pl—>p2 =+ 2" causes a compiler error, where pl and p2 are pointers.

OnuNIx, theexpressionn areturn statemenis not convertedo thetype of thefunction,as
promised.

entry statement is not implemented at all.

B. Implementation differences

d
d
d

(o]

CcC CcQQ

«Q

B.1)
B.2)
B.3)

B.4)
B.5)

B.6)
B.7)
B.8)
B.9)

B.10)
B.11)

Sizes of character constants ditfiers: 2, Gcos 4.

Table sizes in compilers differ.
char s andint s have different sizesgchar sare8 bits onuUNix, 9 onGcos wordsare16 bits
on UNIX and36 onGgcos Therearecorrespondinglifferencesn representationsef float s
anddouble s.

Character arrays stored left to right in a woedt@s right to left inuNix.

Passing of floats and doubles diffaws; passes on stackcospassepointer(hiddento nor-
mal user).

Structures and strings are aligned on a word boundamxjmot aligned irccos
GCOSpreprocessor supports #rename, #eseapr;has only #define, #include.

Preprocessor is not invokedsarx unless first character of file is “#”.

Thexternaldefinition “static int ...” is legalon Gcos but getsa diagnosticon uNix. (On
GCcosit meansanidentifier globalto the routines in théile butinvisible to routines compiled
separately.)

A compound statementa@rosmust contain one “;” but olwNIX may be empty.

Omecoscasedistinctionsin identifiersandkeywordsareignored;on UNIX caseis significant
everywhere, with keywords in lower case.

C. Syntax Differences

g

QO Ccoe

C.1)

C.2)
C.3)
C.4)
C.5)
C.6)

UNIX allows broaderclassesf initialization; on Gcosaninitializer mustbe a constanthame,
or string. Similarly, Gcosis muchstickieraboutwantingbracesaroundinitializersandin par-
ticular they must be present for array initialization.
“int extern” illegal oCcos must have “extern int” (storage class before type).
Externals aacosmust have a type (not defaultedrtb).
Gcosallows initialization of internastatic (same syntax as for external definitions).
integep... is not allowed oBCOS
Some operators on pointers are illegabars(<, >).

g C.7)
g C.8)
g C.9)
D

d D.1)
d D.2)

C Reference Manual - 31

register storage class means somethinguarx, but is not accepted @tos
Scope holes: “int x{ j {int x;}" is illegal on uNIX but defines two variables @tos
Whefunction namesare usedasargumenton UNIX, either“fname” or “&fname” may be
usedto geta pointerto thefunction; on Gcos"&fname” generates doubly-indirectpointer.
(Note that both are wrong since the “&” is supposed to be supplied for free.)

. Operating System Dependencies

Gcosallocatesexternalscalarsby SYMREF; uNix allocatesexternalscalarsaslabelledcom-
mon; as aresulttheremay be many uninitialized externaldefinitions of the samevariableon
UNIX but only one orscos

Externalnamesdiffer in allowablelength and characterset; on UNIX, 7 charactersand both
cases; oieCcos6 characters and only one case.

E. Semantic Differences

hg E.1)
d E.2)
d E.3)
d E.4)

“int i, *p; p=i; i=p;” does nothing onuNIx, does something aBcos(destroys right half of i) .
“>>" means arithmetic shift orwNiX, logical ongcos

When achar is converted to integetheresultis alwayspositiveon Gcosbut canbe negative
ONUNIX.

Arguments of subroutines are evaluated left-to-right©os right-to-left onunix.

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detextingnber of
bugs and obscurities.It enforces the type rules of C more strictly than the C com-
pilers. It may also be used to enforcenamberof portability restrictionsinvolved in
moving programs between different machines and/or operating systAmasther
option detects a number of wasteful, or error prone, constructions which nevertheless
are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them for
consistency.

The separation of function betweént and the C compilers has both historical
and practical rationale.The compilers turn C programs into executable files rapidly
and efficiently. This is possible in part because the compilers do not do sophisticated
type checking, especially between separately compiled prograins. takes amore
global, leisurely view of the program, looking muetore carefully at the compatibili-
ties.

This document discusses the useliof, gives an overviewof the implementa-
tion, and gives some hints on the writing of machine independent C code.

July 26, 1978

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction and Usage

Suppose there are twolGource filesfilel.c andfile2.c, which are ordinarilycompiled and
loadedtogether. Then the command

lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the proghamsogram enforces
the typing rules of C more strictly than the C compiléfir both historical and practical reasons)
enforce them.The command

lint —p filel.c file2.c

will produce, in addition to the above messages, additional messages which relate to the portability of
the programsto other operating systems and machinBeplacing the-p by —h will produce messages
aboutvarious error-prone or wasteful constructions which, strictly speaking, are not Baggig—hp

gets the whole works.

The next severalsections describe the major messages; the document closes with sections discuss-
ing the implementation and giving suggestions for writing portableA@.appendixgivesa summaryof
thelint options.

A Word About Philosophy

Many of the facts whiclint needs may be impossible to discovénr example, whether a given
function in a program ever gets called may depend on the input Deteiding whetherexit is ever
called is equivalent to solving the famous “halting problem,” known to be recursively undecidable.

Thus, most of thdint algorithmsare a compromiself a function is never mentioned, it can
neverbe called. If a function ismentioned/Jint assumes it can be called; this is not necessarily so, but
in practice is quite reasonable.

Lint tries to give information with a high degree of relevantéessages of the formxkx might
be a bug” are easy to generate, but are acceptable only in proportion to the fraction of rehkypugs
uncover. If this fraction of real bugs is too small, the messages losedteslibility and servemerelyto
clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classessagesvhich lint
produces.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions
may become unused; it is not uncommon for external variables, or even entire functions, to become
unnecessary, and yet not be removed from the souftese “errors of commission” rarely cause
working programsto fail, but they are a source of inefficiency, and make programs harder to understand
andchange. Moreover, information about such unused variables and functions can occassemadiio
discover bugs; if a function does a necessary job, and is never called, something is wrong!

Lint complainsaboutvariables and functions which are defined but not otherwise mentichred.
exception is variables which are declared through expidiérn statementsut are never referenced,;

thus the statement
extern float siny;

will evoke no comment igin is never used.Note that this agrees with the semantics of the C compiler.
In some cases, these unused external declarations might be of some interestn beegliscoveredby
adding the-x flag to thelint invocation.

Certain styles of programming require many functions to be wnitiéim similar interfaces;fre-
guently, some of the arguments may be unused in moérke calls. The —v option is available to
suppresghe printing of complaints about unused argument¢hen—v is in effect, no messages are
produced about unused arguments except for those arguments asbighusedand also declaredas
register arguments; this can be considered an active (and preventable) waste of the register sésources
the machine.

There is one case where information about unusedndefinedyariablesis more distractingthan
helpful. This is whenlint is applied to some, but not all, files out of a collection which are to be loaded
together. In this case, many of the functions and variables defined may not be used, and, conversely,
many functions and variables defined elsewhere may be Udesl-u flag may be used to suppress the
spurious messages which might otherwise appear.

Set/Used I nformation

Lint attempts to detect cases where a variable is used before it ihsstis verydifficult to do
well; many algorithms take a good deal of time and space, and still produce messages about perfectly
valid programs. Lint detects local variables (automatic and register storage classes) whosesefirst
appears physically earlier in the input file than the first assigntoehe variable. It assumeghat tak-
ing the addres®f a variable constitutesa “use,” since the actual use may occur at any later time, in a
data dependent fashion.

The restrictionto the physicalappearancef variables in the file makes the algorithm very simple
and quick to implement, since the true flow of control need not be discovirddes mean thdint
can complain about some programs which are legal, but these programs would probably be considered
bad on stylistic grounds (e.g. might contain at least tguto’'s). Because static and external variables
are initialized to 0, no meaningful information can be discovered about their Tesalgorithmdeals
correctly, however,with initialized automatic variables, and variables which are used in the expression
which first sets them.

The set/usednformation also permits recognition of those local variables which are set and never
used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs.

Flow of Control

Lint attempts to detect unreachable portions of the programs which it procéssets. complain
about unlabeled statements immediately followgajo, break, continue, or return statements. An
attempt is made to detect loops which can never be left at the baoigbeatingthe specialcaseswhile(

1) andfor(;;) as infinite loops.Lint also complainsabout loops which cannot be entered at the top;
some valid programs may have such loops, but at best they are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorittirhas no way of detect-
ing functions which are calleand neverreturn. Thus,a call to exit may cause unreachable code which
lint doesnot detect;the mostseriouseffectsof this are in the determination of returned function values
(see the next section).

One form of unreachable statement is not usually complained abdirtbya break statement
that cannotbe reached causes no messaBeograms generated lyacc,2 and especiallyex,3 may have
literally hundreds of unreachablteeak statements. TheO flag in the C compiler will often eliminate
the resultingobjectcodeinefficiency. Thus,theseunreachedtatements are of little importance, there is
typically nothingthe user can do about them, and the resulting messages would clutter luy thet-
put. If these messages are desidaat, can be invoked with theb option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly use
function “values” which have never been returnddnt addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both
return(expr);
and
return ;
statements is cause for alardint will give the message
function namecontains return(e) and return

The most serious difficulty with this is detecting when a function return is implied byofiaentrol
reaching the end of the functiorThis can be seen with a simple example:

f(a){
if (a)return (3);
il();

Notice that, ifa tests falsef will call g and then return with no defined return value; thi§ trigger a
complaint fromlint. If g, like exit, never returns, the message will still be produced when in fact noth-
ing is wrong.

In practice, some potentially serious bugs have been discovered by this featureadcalsusor
a substantial fraction of the “noise” messages producelinby

On a global scaldint detectscaseswvherea function returns a value, but this value is sometimes,
or always, unusedWhen the value is always unused, it may constituténefficiencyin the function
definition. When the value is sometimes unused, it may represent bad style (e.g., not testing for error
conditions).

The dual problem,using a function value when the function does not return one, is also detected.
This is a serious problem.Amazingly, this bug has been observed on a couple of occasions in “work-
ing” programs; the desired function value just happened to have been computed in the fwhation
register!

Type Checking

Lint enforcesthe type checking rules of C more strictly than the compilers Twe additional
checkingis in four major areas:across certain binary operators and implied assignments, at the structure
selection operators, between the definition and uses of functions, and in the use of enumerations.

There are a number of operators which have an impigancingbetweentypes ofthe operands.
The assignment, conditiondl?:), andrelational operators have this property; the argumentrefwan
statement, and expressions used in initialization also suffer similar converdioribese operations,
char, short, int, long, unsigned, float, and double types may be freely intermixedThe types of
pointers must agree exactly, except that arraysso€an, of course, be intermixed with pointers<ta

The type checking rules also require that, in structure referencegfttioperandof the —> be a
pointerto structure, the left operand of thebe a structure, and the right operand of these operators be a
member of the structure implied by the left opera&imilar checking is done for references to unions.

Strict rules apply to function argument and return value matchirte typesfloat and double
may be freely matched, as may the typlear, short, int, andunsigned. Also, pointers can be matched
with the associatedarrays. Aside from this, all actual arguments must agree in type with their declared
counterparts.

With enumerations, checks are made that enumeration variablegmbersare not mixed with
othertypes,or otherenumerations, and that the only operations applied are =, initialization, ==, !=, and

function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable programs.
Consider the assignment

p=1;
wherep is a character pointerLint will quite rightly complain. Now, consider the assignment
p = (charD1 ;

in which a cast has been used to convert the integer to a character polmgrogrammerobviously

had a strong motivation for doing thend hasclearly signaledhis intentions. It seemsharshfor lint to
continue tocomplain aboutthis. On the other hand, if this code is moved to another machine, such
code should be looked at carefullythe —c flag controlsthe printing of comments about casté/hen

—c is in effect, casts ardreatedas though they were assignments subject to complaint; otherwise, all
legal casts are passed without comment, no matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-11,charactersare signed quantities, with a range frerti28 to 127. On most of the
other C implementations, characters take on only positive valliess, lint will flag certain comparis-
ons and assignments as being illegal or nonportabte.example, the fragment

char c;

if((c = getchar]) <0)

works on the PDP-11, but will fail on machines where characters alway®nak@sitive values. The
real solution is to declare an integer, sincgetchar is actually returning integer valuesn any case,
lint will say “nonportable character comparison”.

A similar issueariseswith bitfields; whenassignments of constant values are made to bitfields, the
field may be too small to hold the valueThis is especially true because on some machines bitfields are
consideredas signedquantities. While it may seem unintuitive to consider that a two bit field declared
of type int cannothold the value 3, the problem disappears if the bitfield is declared to have type
unsigned.

Assignments of longs to ints

Bugs may arise from the assignmentafg to anint, which loses accuracyThis may happenin
programs which have been incompletebnvertedto usetypedefs. Whena typedef variable is changed
from int to long, the programcan stop working because some intermediate results may be assigned to
ints, losing accuracy.Since there are a number lefitimate reasonsfor assigninglongs to ints, the
detection of these assignments is enabled by-thitag.

Strange Constructions

Severalperfectly legal, but somewhat strange, constructions are flaggetinty the messages
hopefully encourage better code quality, clearer style, and may even point outTimegsh flag is used
to enable these check&or example, in the statement

(p++;
the Odoes nothing; this provokes the message “null effect” floxh. The program fragment

unsigned X ;
if(x <0) ..

is clearly somewhat strange; the test will never succ&auhilarly, the test

if(x>0) ...
is equivalent to
if(x!=0)

which may not be the intended actioint will say “degenerate unsigned comparison” in these cases.
If one says

if(11=0) ...

lint will report “constant in conditional context”, since the comparison of 1 with 0 gavesnstant
result.

Another construction detected biint involves operator precedence. Bugs which arise from
misunderstandingsbout the precedence of operators can be accentuated by spacing and formatting,
making such bugs extremely hard to fingor example, the statements

if(x&077 ==0) ...
or
x<2 + 40

probablydo not do what was intended.The best solution is to parenthesize such expressiondjnand
encourages this by an appropriate message.

Finally, when the-h flag is in forcelint complains about variables which are redeclared in inner
blocks in a way that conflicts with their use in outer blocK#is is legal, but is consideredoy many
(including the author) to be bad style, usually unnecessary, and frequently a bug.

Ancient History

There are several forms of older syntaRich are being officially discouraged. Thesefall into
two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =—.) could cause ambiguous expressions,
such as

a =-1;

which could be taken as either
a=—1,;

or
a =-1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro substitu-
tion. The newer, and preferred operators (+=, etc.) haveno such ambiguities.To spur the aban-
donment of the older formént complains about these old fashioned operators.

A similar issue arises with initializationThe older languageallowed
int x 1;
to initialize x to 1. This also caused syntactic difficulties: for example,
int x (=1);
looks somewhat like the beginning of a function declaration:

int x (y){ ...

and the compiler must read a fair ways pagt order to sure whahe declarationreally is.. Again, the
problemis evenmore perplexing when the initializer involves a macithe current syntax places an
equals sign between the variable and the initializer:

int x = -1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, andoillegaérs, due
entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign integer
pointersto double pointers,since double precision values may begin on any integer bound#wy. the
Honeywell 6000, double precisionvaluesmustbeginon even word boundaries; thus, not all such assign-
ments make senselint tries to detectcaseswhere pointers are assigned to other pointers, and such
alignmentproblemsmight arise. The messagé‘possible pointer alignment problem” results from this
situation whenever either the or —h flags are in effect.

Multiple Uses and Side Effects

In complicated expressions, the best order in whelevaluatesubexpressionsnay be highly
machine dependentFor example,on machines(like the PDP-11) in which the stack runs backwards,
function arguments will probably be best evaluated from right-to-left; on machines wsifitkerunning
forward, left-to-right seems most attractivé&unction calls embedded as argumentsthier functions
may or may not be treated similarly to ordinary argumer8snilar issues arisavith other operators
which have side effects, such as the assignment operators and the increment and decrement operators.

In order that the efficiency of C on particular machine not be unduly compromised,the C
language leaves the order of evaluation of complicated expressions up to the local compiler, and, in fact,
the various C compilers have considerable differences in the oraehnich they will evaluatecompli-
cated expressionsln particular,if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

Lint checks for the important special case where a sisgadarvariableis affected. For exam-
ple, the statement

afi] = bli++] ;
will draw the complaint:

warning:i evaluation order undefined

I mplementation

Lint consists of two programs and a drivérhe first program is a version of the Portable C Com-
piler*> which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C compiléis.com-
piler does lexical and syntax analysis on the input text, constructs and masyaibsel tables,and
builds treesfor expressions.Instead of writing an intermediate file which is passed to a code generator,
as the other compilers dint producesan intermediatefile which consists of lines of ascii texEach
line contains an external variable name, an encoding of the context in whiakseen(use,definition,
declaration.etc.), a type specifier, and a source file name and line numBdre information about vari-
ables local to a function or file is collected by accessing the symbol table, and examining the expression
trees.

Comments about local problems are produced as detetteel.information abouéxternalnames
is collected onto an intermediate filé&fter all the source files and library descriptidmsve beercol-
lected, the intermediate file is sorted to bring all information collected about a given extammal
together. The second, rather small, program then reads the flioesthe intermediatefile andcompares
all of the definitions, declarations, and uses for consistency.

The driver controlsthis process,and is also responsible for making the options available to both
passes ofint .

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host operating
system. This meansthat the implementation of C tends to follow local conventions rather than adhere
strictly to uNixT system conventionsDespitethesedifferences,many C programs have been success-
fully moved to GCOS and the various IBM installations with little effoFhis sectiondescribessome
of the differences between the implementations, and discussdiattfeatures which encourage porta-
bility.

Uninitialized external variables are treated differently in different implementations &uppose
two files both contain a declaration without initialization, such as

inta ;

outside of any function.The uNix loader will resolve these declarations, araliseonly a single word

of storage to be set aside far Under the GCOS and IBM implementations, this is not feasible (for
variousstupid reasons!) so eachsuch declaration causes a word of storage to be set aside andacalled
When loading or library editing takes place, this causes fatal conflicts which prevent the proper opera-
tion of the program.If lint is invoked with the-p flag, it will detect such multiple definitions.

A relateddifficulty comesfrom the amount of information retained about external names during
the loading processOn theuNix system, externally known names have seven significant characters,
with the upper/lower case distinction kep@n the IBM systems, there are eight significant characters,
but the casedistinctionis lost. On GCOS,thereare only six characters, of a single ca3dis leads to
situations where programs run on thax system, but encounter loader problems on the BNECOS
systems. Lint —p causes all external symbols to be mapped to one case and truncated to six characters,
providing a worst-case analysis.

A number of differences arise in the area of character handling: charactersuimxt®ystem are
eight bit ascii, while they are eight bit ebcdic on BB®, and nine bit asciion GCOS. Moreover,char-
acter strings go from high to low bit positions (“left to right”) on GCOS and IBM, and towigh
(“right to left”) on the PDP-11. This means that code attempting to construct strings out of character
constants, or attempting to use characters as indices into arrays, must be lositbdyeatsuspicion.
Lint is of little help here, except to flag multi-character character constants.

Of course,the word sizes arddifferent! This causes less trouble than might be expected, at least
when moving from theNix system (16 bit words) to the IBM (32 bits) or GCOS (36 hifEhe main
problemsare likely to arise in shifting or maskingC now supports a bit-field facility, which can be
used to write much of this code in a reasonably portable Wagquently, portability of suchodecan
be enhancedyy slight rearrangements in coding styl&lany of the incompatibilities seem to have the
flavor of writing

X &= 0177700 ;

to clear the low order six bits af This suffices on the PDP-11, but fails badly on GCOS and IBM.
the bit field feature cannot be used, the same effect can be obtained by writing

X &= 0077 ;
which will work on all these machines.

The right shift operatoris arithmetic shift on the PDP-11, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be tyysighed. Characters
are considered signed integers on the PDP-11, and unsigned on the other madfim@ersistence of
the sign bit may be reasonably considered a bug in the PDP-11 hardware which has infiltrated itself into
the C language.lf there were a good way to discover the progravhich would be affected,C could
be changed; in any cadet is no help here.

The above discussion may have made the problem of portability seem bigger thdacitim
The issues involved here are rarely subtle or mysterious, at least tmgleenentorof the program,

TUNIX is a Trademark of Bell Laboratories.

-8-

although they can involve some work to straighten oithie most serious bar the portability of UNIX
system utilities has been the inability to mimic essentiak system functions on the other systems.
The inability to seek to a random character position in a text dileto establisha pipe between
processes, has involved far more rewriting and debugging than any diffdrencesin C compilers.
On the other handint has been very helpful in moving theix operating system and associated utility
programs to other machines.

Shutting Lint Up

There are occasions when the programmemarterthanlint. There may be valid reasons for
“illegal” type casts,functionswith a variable number of arguments, etbloreover, as specified above,
the flow of control information produced hint often has blind spots, causing occasismlriousmes-
sages about perfectly reasonable programisus, someway of communicating witHint, typically to
shut it up, is desirable.

The form which this mechanism should take is not at all cledew keywords would require
current and old compilers to recognize these keywords, if only to ignore thkim.has both philosoph-
ical and practical problemsNew preprocessor syntax suffers from similar problems.

What wasfinally donewasto cause a number of words to be recognizedittywhen they were
embeddedn comments. Thisequiredminimal preprocessor changes; the preprocessor just had to agree
to pass comments through to its output, instead of deleting them dsebagdreviously done. Thus,
lint directives are invisible to the compilers, and the effect on systemstheitbider preprocessorss
merely that thdint directives don’t work.

The first directive is concernedwith flow of control information; if a particular place in the pro-
gram cannot be reached, but this is not apparelttothis can be asserted by the directive

/* NOTREACHED */

at the appropriatespotin the program. Similarly, if it is desired to turn off strict type checking for the
next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expr@$sorv flag can be
turned on for one function by the directive

/* ARGSUSED */
Complaints about variable number of arguments in calls to a function can be turned off by the directive
/* VARARGS */

preceding the function definitionln some cases, it is desirable to check the first several arguments, and
leavethe later argumentaunchecked. This can be done by following the VARARG&yword immedi-
ately with a digit giving the number of arguments which should be checked; thus,

/* VARARGS2 */
will cause the first two arguments to be checked, the others uncheekedly, the directive
/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file; this topic is worth a section by itself.

Library Declaration Files
Lint accepts certain library directives, such as

_|y

and tests the source files for compatibility with these librari€his is done by accessinglibrary
description files whose names are constructed from the lidieagtives. These files all begin with the
directive

/* LINTLIBRARY */

which is followed by a series of dummy function definition§he critical parts of these definitions are
the declarationof the function returntype, whether the dummy function returns a value, and the number
and types of arguments to the functiomhe VARARGS and ARGSUSED directives can be used to
specify features of the library functions.

Lint library files are processed almost exactly like ordinary source fild® only difference is
that functions which are defined on a library file, but are not asealsourcefile, draw no complaints.
Lint does not simulate a full library searchalgorithm, and complains if the source files contain a
redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given againsstandardlibrary file, which contains
descriptions of the programs which are normally loaded veh€rprogramis run. Whenthe -p flag is
in effect, another file is checked containing descriptionghefstandardl/O library routineswhich are
expected to be portable across various machifié -n flag can be used to suppressliditary check-

ing.

Bugs, etc.

Lint was a difficult program to write, partially becausésitlosely connectedwvith mattersof pro-
gramming style, and partially because users usually don't notice bugs whichlioause miss errors
which it should have caught(By contrast, iflint incorrectly complains about something that is correct,
the programmer reports that immediately!)

A number of areas remain to be further develop&de checking of structures and arragsather
inadequate; size incompatibilities go unchecked, and no attempt is made to match up structure and union
declarations across filesSome stricter checking of the use of tigpedef is clearly desirable, but what
checking is appropriate, and how to carry it out, is still to be determined.

Lint shares the preprocessor with the C compilkr.some point it may be appropriate foispe-
cial version of the preprocessorto be constructed which checks for things such as unused macro
definitions, macro arguments which have side effects which are not expanded at all, or are expanded
more than once, etc.

The central problem withint is the packaging of the information which it collect§here are
many options which serve only to turn off; slightly modify, certainfeatures. There are pressureto
add even more of these options.

In conclusion,it appears that the general notion of having two programs is a goodTbeecom-
piler concentrates on quickly and accurately turning the program text intevhuith can be run; lint
concentrates on issues of portability, style, and efficieddgt can afford to be wrong, since incorrect-
nessand over-conservatisnare merely annoying,not fatal. The compiler can be fast since it knows that
lint will coverits flanks. Finally, the programmer can concentrate at one stage of the programming pro-
cesssolely on the algorithms,data structures, and correctness of the program, and then later retrofit, with
the aid oflint, the desirable properties of universality and portability.

-10 -

References

1. B. W. Kernighan and D. M. RitchiefThe C Programming Languag®@rentice-Hall, Englewood
Cliffs, New Jersey (1978).

2. S.C.Johnson;'Yacc — Yet Another Compiler-Compiler,” Comp. Sci. Tech. Rep. No. E&ll
Laboratories,Murray Hill, New Jersey (Jul§975).

3. M. E. Lesk, “Lex — A Lexical Analyzer Generator,” Comp. Sdiech. Rep. No. 39, Bell
Laboratories,Murray Hill, New Jersey (Octobd975).

4, S. C. Johnson and D. NRitchie, “U Nix Time-Sharing System: Portability of C Programs and the
UNIx System,” Bell Sys. Tech. B7(6), pp.2021-2048 (1978).

5. S. C. Johnson, “A Portable Compiler: Theory and Practié&@c. 5th ACM Symp. on Principles

of Programming Languagepp.97-104 (January 1978).

-11 -

Appendix: Current Lint Options
The command currently has the form

lint [-options] files... library-descriptors...

The options are

Perform heuristic checks

Perform portability checks

Don'’t report unused arguments

Don't report unused or undefined externals
Report unreachablier eak statements.
Report unused external declarations
Report assignments &bng to int or shorter.
Complain about questionable casts

No library checking is done

Same a$ (for historical reasons)

w -5 0O 9 X T ©c < T T

Make — A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be repro-
cessed or recompiled after a change is made in some part of the sbhlake.pro-
vides a simple mechanism for maintaining up-to-date versionsogframsthat result
from many operations on a number of filds.is possible to telMake the sequence of
commandsthat createcertain files, and the list of files that require other files to be
current before the operations can be doWéhenever a change is made in any part of
the programthe Make command will create the proper files simply, correctly, and
with a minimum amount of effort.

The basic operation oMake is to find the name of a needed target in the
description, ensure that all of the files on which it depends aritre up to date,
and then createthe targetif it has not been modified since its generators wélke
description file really defines the graph of dependendiéske does a depth-first
search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to encap-
sulate commands in a single file for convenient administration.

August 15, 1978

Make — A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

It is common practice to divide large programs into smaller, more manageable pibegsieces
may require quite different treatmentsome may need to be run through a macro processor, some may
needto be processed by a sophisticated program generator (e.g., Yacc[l] or LeX}24).outputsof
these generators may then have to be compiled with spmmiains and with certain definitions and
declarations. The code resulting from these transformations may then need to be loaded together with
certain libraries under the control of special optiofelated maintenanceactivities involve running
complicatedtest scripts and installing validated modulddnfortunately, it is very easy for a program-
mer to forget which files depend on which others, which files haeamodifiedrecently,andthe exact
sequence of operations needed to make or exeaaigsv versionof the program. After a long editing
sessionpne may easily lose track of which files have been changed and which object modules are still
valid, since a change to a declaration can obseletezenotherfiles. Forgettingto compile a routine
that hasbeenchangedor that uses changed declarations will result in a program that will not work, and
a bug that can be very hard to track dovwdn the other hand, recompiling everythingsight just to be
safe is very wasteful.

The programdescribed in this report mechanizes many of the activities of program development
and maintenance.If the information on inter-file dependences and command sequences is stored in a
file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number thdteleaadited
sincethe last “make”. In most cases, the description file is easy to vaitd changednfrequently. It

is usually easier to type theakecommandthan to issue even one of the needed operations, so the typi-
cal cycle of program development operations becomes

think — edit —make— test . . .

Make is most useful for medium-sizedprogramming projects; it does not solve the problems of
maintaining multiple source versions or of describing huge progravteke was designed for use on
Unix, but a version runs on GCOS.

Basic Features

The basic operation ohakeis to update a target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the targétg notbeenmodified sinceits dependents
were. Make does a depth-first search of the graph of dependenthks. operation of the command
depends on the ability to find the date and time that a file was last modified.

To illustrate,let us consider a simple examplé& program namegbrog is made by compiling and
loading three C-language filesc, y.c, andz.c with the IS library. By convention, the output of the C
compilations will be found irfiles namedx.o, y.o, andz.o. Assume that the fileg.c andy.c share
some declarations in a file nameefs but thatz.c does not. That is,x.c andy.c have the line

#include "defs"

The following text describes the relationships and operations:

prog: X.0 y.0 z.0
CC X.0 y.0 z.0 -IS —o0 prog

X.0 y.0: defs
If this information were stored in a file namexdkefile the command

make

would perform the operations needed to recrgatg after any changes had been madeny of the
four source filex.c, y.c, z.c, or defs

Make operates using three sources of informati@enuser-supplied description fi{as above),file
names and “last-modified” times from the file system, and built-in rules to bridge ebthe gaps. In
our example, the first line says thatog depends on three.d” files. Once these object files are
current,the secondline describes how to load them to crepteg. The third line says that.o andy.o
dependon the filedefs From the file systemmakediscovers that there are threec™ files correspond-
ing to the needed .o” files, and uses built-in information on how to generate an object from a source
file (i.e.,issue a “cc €” command).

The following long-winded description file is equivalent to the one ahmvietakesno advantage
of makeés innate knowledge:

prog: X.0 y.0 z.0
CC X.0 y.0 z.0 48 -0 prog

X.0: X.c defs

CC —C X.C
y.0: y.c defs

cC —C y.C
z.0: z.C

cc — z.c

If none of the source or object files had changed since the laspitigavas made, all of the files
would be current, and the command

make

would just announce this fact and stol, however, thedefsfile had been editek.c andy.c (but not
z.c¢) would be recompiled, and thgmog would be created from the newd” files. If only the filey.c
had changed, only it would be recompiled, but it would still be necessary to petmad

If notargetname is given on thmakecommand line, the first target mentioned in the description
is created; otherwise the specified targets are matle.command

make X.0

would recompilex.o if x.c or defshad changed.

If the file existsafter the commandsare executed, its time of last modification is used in further
decisions; otherwise the current time is usédis often quite usefuto include rules with mnemonic
names and commands that do not actually produce wittlethat name. These entries can take advan-
tage ofmakeés ability to generate files and substitute macrd$ws, an entry “save” might be included
to copy a certain set of files, or an entry “cleanup” might be used to throw away unneeded intermediate
files. In other cases one may maintain a zero-length file ptoekgeptrack of the time at which cer-
tain actionswere performed. This technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependencyalimtesommandstrings.
Macros are defined by command arguments or description file lines with embedded equalAsigns.
macrois invoked by preceding the name by a dollar sign; macro names longer than one character must
be parenthesized.The nameof the macrois eitherthe single character after the dollar sign or a name
inside parenthesesThe following are valid macro invocations:

$(CFLAGS)
$2

$(xy)

$Z

$(2)

The last two invocations are identicah$ is a dollar sign.All of these macros arassignedvaluesdur-
ing input, as shownbelow. Four special macros change values duringekecutionof the command:
$0 $@, $?, and<$ They will be discussed latefThe following fragment shows the use:

OBJECTS = x.0 y.0 z.0
LIBES = -IS
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) e prog

The command
make

loads the three object files with tilibrary. Thecommand
make "LIBES= Il —IS"

loads them with both the Lex (‘) andthe Standard“— IS™) libraries,sincemacrodefinitionson the
commandline overridedefinitionsin the description.(It is necessary to quote arguments with embedded
blanks inuNixt commands.)

The following sections detail the form of description files and dbemandline, and discuss
options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of informatiamacro definitions, dependenayformation,
and executablecommands. There is also a commentconvention: all characters after a sharp (#) are
ignored, as is the sharp itselBlank lines and lines beginning with a sharp are totmjhored. If a
non-comment line is too long, it can be continued usitbgckslash.If the last characterof a line is a
backslash, the backslash, newline, and following blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign precededoy a colon or atab. The name
(string of lettersand digits) to the left of the equal sign (trailing blanks and tabs are stripped) is assigned
the string of characters following the equal sign (leading blanks andcatalssripped.) The following
are valid macro definitions:

2 = xyz
abc =l -ly -IS
LIBES =

The last definition assigns LIBES the null strin§. macro that isneverexplicitly definedhasthe null
string as value.Macro definitions may also appear on thakecommand line (see below).

Other lines give information about target fileBhe general form of an entry is:

targetl [target2 . . .] :[:] [dependentl . . .] [; commands] [# . . .]
[(tab) commands] [# . .]

ltemsinside brackets may be omitted.argets and dependents are strings of letters, digits, periods, and
slashes. (Shell metacharacters¥ and“?” areexpanded.)A command is any string of characters not
including a sharp (except in quotes) or newlif@ommands may appear either afteseamicolonon a

TUNIX is a Trademark of Bell Laboratories.

-4 -

dependency line or on lines beginning with a tab immediately following a dependency line.

A dependency line may have either a single or a double cofomarget namemay appearon
more than one dependency line, but all of those lines must be of the same (single or double colon) type.

1. For the usual single-coloncase, at most one of these dependency lines may have a command
sequence associated with if the target is out of date with any of the dependentamgnof the
lines, and a commandsequences specified (even a null one following a semicolon or tab), it is
executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency line; if
the targetis out of date with any of the files on a particular line, the associated commands are
executed. A built-in rule may also be executedhis detailed form is of particular value in updat-
ing archive-type files.

If a target must be created, the sequence of commsamckecuted. Normally, eachcommandline

is printed andthen passedo a separate invocation of the Shell after substituting for macfdke print-

ing is suppresseth silent mode or if the command line begins with an @ sidviake normally stops

if any command signals an error bgturninga non-zeroerror code. (Errors are ignoredif the “—i”

flagshas been specified on theakecommand line, if the fake target name “.IGNORE” appears in the

description file, or if the command string time descriptionfile beginswith a hyphen. Someunix com-
mands return meaningless statuBecause each command line is passed to a separate invarfattien

Shell, care must be taken with certain commands @lgnd Shell control commands) that have mean-

ing only within a single Shell process; the results are forgotten before the next line is executed.

Before issuing any command,certain macrosare set. $@ is set to the name of the file to be
“made”. $? is set to the string of names thare found to be youngerthan the target. If the com-
mandwas generatedoy an implicit rule (see below),<$is the name of the related file that caused the
action, and ®is the prefix shared by the current and the dependent file names.

If afile mustbe made but there are no explicit commands or relevant built-in rules, the commands
associated with the name “.DEFAULT"” are usetf.there is no such namejakeprints a message and
stops.

Command Usage
The make command takes four kinds of argumentsiacro definitions, flags, description file
names, and target file names.
make [flags][macro definitions][targets]

The following summary of the operation of the command explains how these arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and the
assignments madeCommand-line macros override corresponding definitimumd in the description
files.

Next, the flag arguments are examinéde permissible flags are

—i Ignore error codes returned by invoked commantisis mode is entered if thiake targetname
“.IGNORE" appears in the description file.

—s Silentmode. Do not print command lines before executinbhis mode is also entered if the fake
target name “.SILENT” appears in the description file.

—r Do not use the built-in rules.

—n No executemode. Print commandsbut do not execute themEven lines beginning with an “@”
sign are printed.

—t Touch the target files (causing them to be up to date) rather than issue the usual commands.

—q Question. The make commandreturnsa zero or non-zero status code depending on whether the
target file is or is not up to date.

-5-

—p Print out the complete set of macro definitions and target descriptions
—d Debug mode.Print out detailed information on files and times examined.

—f Description file name.The next argument is assumed tothe nameof a descriptionfile. A file
name of “~’ denotes the standard inputlf there are no “$” arguments, the file named
makefileor Makefilein the current directory is readl'he contents of the description files override
the built-in rules if they are present).

Finally, the remainingargumentsare assumedo be the names of targets to be made; they are
done in left to right order.If there are no such arguments, the first name in the description files that
does not begin with a period is “made”.

Implicit Rules

The makeprogramusesa table of interestingsuffixes and a set of transformation rules to supply
default dependency information and implied comman@Bhe Appendix describesthese tables and
meansof overridingthem.) The default suffix list is:

Object file

C source file

Efl source file

Ratfor source file

Fortran source file
Assembler source file
Yacc-C source grammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

=

'—*'r<D~'<~'<in'—h'—='rD'o'o

The following diagramsummarizes the default transformation patHsthere are two paths connecting a
pair of suffixes, the longer one is used only if the intermediate file exists or is named in the description.

.0
.C .r e f s .y yr.wye .l d
AN | |
d oy yr .ye

If the file x.o were needed and there werexaain the description or directory, it would be com-
piled. If there were also am.l, that grammar would be run through Lex before compiling the result.
However, if there were ng.c but there were am.l, make would discard the intermediate C-language
file and use the direct link in the graph above.

It is possibleto changethe namesof some of the compilers used in the default, or the flag argu-
ments with which they are invoked by knowing the macro names uBkéd.compiler names arthe
macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEXhe command

make CC=newcc

will cause the “newcc” command to be used instead of the usual C compler.macros CFLAGS,
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commandsigsubdwith
optional flags. Thus,

make "CFLAGS=0"

causes the optimizing C compiler to be used.

Example

As an example of the use ofake,we will present the description file used to maintain niake
command itself. The code formakeis spread over a number of C source files and a Yacc grammar.
The description file contains:

Description file for the Make command

P = und -3 Oopr —+2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o

LIBES= -IS
LINT = lint —p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES)o-make

size make
$(OBJIECTS): defs
gram.o: lex.c
cleanup:
-rm *.0 gram.c
-du
install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make
print: $(FILES) # print recently changed files
pr $?0%P
touch print
test:

make -dp Ogrep -v TIME >1zap
/usr/bin/make dp Ogrep v TIME >2zap
diff 1zap 2zap

rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuingTihe following output results from typing the
simple command

make

in a directory containing only the source and description file:

cc —cversion.c

cc —C main.c

cc —c doname.c

cC —C misc.c

cc —cfiles.c

cc —c dosys.c

yacc gram.y

mv y.tab.c gram.c

cc —cgram.c

cc version.o main.o doname.o misc.o files.o dosys.o graf&oe-e make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the descriptinakide,
found themusingits suffix rules and issued the needed commard® string of digits results from the
“size make” command;the printing of the command line itself was suppressed by an @ sifimle @

sign on thesize command in the description file suppressed the printing of the command, so only the
sizes are written.

The last few entries in the description file are useful maintenance sequdteesprint” entry
prints only the files that have been changed since the last “make print” commarzkro-length file
print is maintainedto keeptrack of the time of the printing; the $? macro in the command line then
picks up only the names of the files changed sipdaet wastouched. The printed output can be sent to
a different printer or to a file by changing the definition of Rhmacro:

make print "P = opr sp"
or
make print "P=cat>zap"

Suggestions and Warnings

The most common difficulties arise fromakeés specific meaning of dependencif. file x.c has a
“#include "defs"” line, then theobjectfile x.0 depends omlefs the source filx.c does not. (If defsis
changed, it is not necessary to do anything to thefilewhile it is necessary to recreat®.)

To discover whatmakewould do, the “-n" option is very useful. The command
make -n

ordersmaketo print out the commands it would issue without actutking the time to executethem.

If a changeto a file is absolutely certain to be benign (e.g., adding a new definition to an include file),
the “—t” (touch) option can save a lot of timanstead of issuin@ large numberof superfluougecom-
pilations,makeupdates the modification times on the affected filbus, the command

make s

(“touch silently”) causes the relevant files to appear up to d&@bvious care is necessary, sirbés
mode of operation subverts the intentiomadkeand destroys all memory of the previous relationships.

The debugging flag (“d”) causesmaketo print out a very detailed description of what it is
doing, including the file timesThe output is verbose, and recommended only as a last resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance control.
| would like to thank S. C. Johnson and H. Gajewska for being the guineapigs during develop-
ment ofmake

References

1. S.C.Johnson;'Yacc — Yet Another Compiler-Compiler”, Bell Laboratories Computing Science
Technical Report #32, July 1978.

2. M. E. Lesk, “Lex — A Lexical Analyzer Generator”, Computing Science Technical Report #39,
October 1975.

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffikhis information is storeih an internal
table that has the form of a description filk.the “—r” flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name “.SUFFIXES8dkelooks for a
file with any of the suffixes on the list.If such a file exists, and if there is a transformation rule for that
combination,makeactsasdescribedearlier. The transformation rule names are the concatenation of the
two suffixes. The name of the rule to transform a™file to a “.0" file is thus “.r.0". If the rule is
presentand no explicit command sequence has been given in the user’s description files, the command
sequence for the rule “.r.0” is usedf a command is generated by using one of these suffixing rules,
the macro $lis given the value of the stem (everything but the suffixthefname of the file to be
made, and the macra<$s the name of the dependent that caused the action.

The order of the sulffix list is significant, since it is scanned from left to right, and the first name
that is formed that has both a file and a rule associated with it is ukatkw namesare to be
appended, the user can just add an entry for “.SUFFIXES” in his own descriptiothéldependents
will be added to the usual listA “.SUFFIXES” line without any dependents deletes the current list.
(It is necessary to clear the current list if the order of names is to be changed).

The following is an excerpt from the default rules file:

SUFFIXES:.0o.c.e.r.f.y.yr.ye.l.s
YACC=yacc
YACCR=yacc -+
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as —
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.C.O:
$(CC) $(CFLAGS) € &
.e.0 .r.o .f.o:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS)c-%

8.0 :
$(AS) —0 3@ &

y.0:
$(YACC) $(YFLAGS) &
$(CC) $(CFLAGS) < y.tab.c
rm y.tab.c
mv y.tab.o $@

y.Cc:

$(YACC) $(YFLAGS) &
mv y.tab.c $@

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming onulkext system. The emphasis
is on how to write programsthat interface to the operating system, either directly or
through the standard 1/O libraryThe topics discussed include

* handling command arguments
e rudimentary 1/O; the standard input and output
« the standard /O library; file system access
« low-level I/O: open, read, write, close, seek
* processes: exec, fork, pipes
* signals — interrupts, etc.
There is also an appendix which describes the standard I/O library in detail.

December 3, 1998

TUNIX is a Trademark of Bell Laboratories.

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

1 INTRODUCTION

This paper describes how to write programs that interface withUmi¥ operating system in a
non-trivial way. This includesprograms that use files by name, that use pipes, that invoke other com-
mands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout sesectibns of The UNIX
Programmer’'s Manua[1] for Version 7UNIX. There is no attempt to be complete; only generally use-
ful materialis dealtwith. It is assumedhat you will be programming in C, so you must be able to read
the language roughly up to the lewdlThe C Programming Languadg]. Some of the material in sec-
tions 2 through 4 is based on topics covered more carefully théma. should also be familiar with
UNIX itself at least to the level afNIX for Beginnerdq3].

2 BASICS

2 Program Arguments

Whena C program is run as a command, the arguments on the command line are made available to
the functionnen as an argument coumrtr and an arrayag/ of pointers to character strings
that contain the argumentsBy convention,ag{] is the command name itself, sor is
always greater than 0.

The following program illustrates the mechanisrit: simply echoes its arguments back to the termi-
nal. (This is essentially thedb command.)

man(agc ,arg v) [/* echoarg uments */
int arg;

cha *argl[]

{

int i;

for (i =1;i<arg c; i+
prtf'%s%c, ary/[], (irg-) ? \n’)
}

agv is a pointerto an arraywhoseindividual elements are pointers to arrays of characters; each is ter-
minated by\ 0, so they can be treated as stringshe program starts by printinggy] and loops
until it has printed them all.

The argument count and the arguments are parameterarto. If you want to keep them around
so other routines can get at them, you must copy them to external variables.

22, The “Standard Input” and “Standard Output”

The simplest input mechanism is to read the “standard input,” which is generally the user’s termi-
nal. Thefunction gedha returns the next input character each time itaked. A file may be sub-
stituted for the terminal by using tkeconvention: ifppg usesgdaha , then the command line

pro g <fi le

causesppg to readfie instead of the terminalpog itself need know nothing about where its
input is coming from. This is also true if the input comes from another program vigipemechan-
ism:

otterp rog | pr@
provides the standard input fppg from the standard output ohepa.

gadha returns the valu&Q- whenit encounters the end of file (or an error) on whatever you
arereading. The value ofECF is normally defined to bel , but it is unwise to take any advantage of
that knowledge. As will become clear shortly, this value is automatically defined for you when you
compile a program, and need not be of any concern.

Similarly, puda¢) puts thecharacterc on the “standard output,” which is also by default
the terminal. The output can be captured on a file by usingif ppg usespuda ,

pro g >ou tfie

writes the standard output autfe instead of the terminaloufe is createdf it doesn’t exist;
if it already exists, its previous contents are overwritt&nd a pipe can be used:

prg | otterp rog
puts the standard output pbg into the standard input afhepa.

The function pirtf , which formats output in various waysses the same mechanismas
pudha does, so calls teinf and pudha may be intermixed in any order; the output will
appear in the order of the calls.

Similarly, the functionsarf provides for formatted input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desireéwf uses the same mechanism as
gada , S0 calls to them may also be intermixed.

Many programs read only one input and witee output; for such programsl/O with geda ,
pudha , sarf , and pirtf may be entirely adequate, and it is almost always enough to get
started. This is particularly true if th&NIX pipe facility is used to connect the output of one program
to the input of the next. For example,the following program strips out all ascii control characters from
its input (except for newline and tab).

#irclu de <stlio .h>

mai n() [* ccgrp: stip nongaphic chaades */
{ .
int c;
whi le ((c = getha() I = EOF)
if ((c >=''&&c<017) [| c==" \t || c==" \n)
putha(9;
ext(0;
}
The line

#irtlu de <stlio .h>

should appear at the beginning of each source flle.causesthe C compiler to read a file
(/usrf/include/stdio.h of standard routines and symbols that includes the definiti&Oef

If it is necessary to treat multiple files, you can ode to collect the files for you:
catfil elfil e2.. | ccdri p>ou tpu

and thus avoid learning how to access fitesn a program. By the way, thecall to ext at the end is
not necessaryo makethe program work properly, but it assures that any caller of the program will see
a normal termination status (conventionally 0) from phegramwhenit completes. Section6 discusses

status returns in more detail.

3. THE STANDARD I/O LIBRARY

The “Standard 1/O Library” is a collection of routines intended to provide effi@adtportablel/O
servicesfor most C programs. The standard I/O library is available on each system that supports C, so
programs that confine their system interactions to its facilities camahsportedfrom one systemto
another essentially without change.

In this section,we will discuss the basics of the standard I/O libramhe appendix contains a more
complete description of its capabilities.

31. File Access

The programswritten so far have all read the standard input and written the standard output, which
we have assumed are magicalhe-defined. The next step is to write a program that accesses a file that
is not already connected to the prograr®ne simple exampleis wc, which counts the lines, words and
characters in a set of fileszor instance, the command

WC X.C Y.C

prints the number of lines, words and characterscin andyc and the totals.

The questionis how to arrangefor the namedfiles to be read — that is, how to connect the file sys-
tem names to the I/O statements which actually read the data.

The rules are simple.Before it can be read or written a file has to lopenedby the standard
library functionfen . fgpen takes an external name (lilkke or yc), does some housekeeping
and negotiation with the operating system, and returns an internal name nusthe usedin subse-
guent reads or writes of the file.

This internal name is actually a pointer, callefila pointer, to a structure which contains informa-
tion about the file, such as the location of a buffer, the current character positionburdférewhether
thefile is beingread or written, and the likeUsers don't need to know the details, because part of the
standard 1/O definitions obtainday including stloh is a structure definition calleBLE . The
only declaration needed for a file pointer is exemplified by

FILE *fp, *fomni;

This says thafp is a pointer to &FLE , andfpen returns a pointer to &LE . (FLE is a type
name, likein , not a structure tag.

The actual call tdpen in a program is
fp = fognpame, mod e);

The first argumentf fgoen is the name of the file, as a character strifipe second argument is the
mode, also as a character string, which indicates how you intend to use th&h&lenly allowable
modes are read(), write (‘W), or append"@).

If afile thatyou openfor writing or appending does not exist, it is created (if possib@pening
an existing file for writing causes the atdntentsto be discarded. Trying to reada file that doesnot
exist is an error, and there may be other causes of error as well (like trying to read a file when'tyou
have permission).If there is any errorfgen will return the null pointer valueNW.L (which is
defined as zero istloh).

The next thing needed is a way to read or wihiesfile onceit is open. Thereare severapossibili-
ties, of whichgec andpuc are the simplestgdc returns the next character from a file; it needs
the file pointer to tell it what file.Thus

¢ = get(p)

places inc the next character from the file referred tofpy; it returnsECQF when it reaches endf file.
puc is the inverse ofjdc

put(c , fp)
puts the charactar on the filefp and returnc. gdc andpuc returnECF on error.

When a program is started, three files are opened automatically, and file pointprevated for
them. These files are the standard input, the standard output, and the standard error output; the
corresponding file pointerare called stih , stdaut , andstler . Normally these are all con-
nected to the terminal, but may be redirected to files or mpetescribedin Section2.2. sth
staut and stlar are pre-definedin the I/O library as the standard input, output and error files;
they may be used anywheam objectof type FLE * can be. They are constants, howevegt vari-
ables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now wvite The basic design is one that
hasbeenfound convenientfor many programs:if there are command-line arguments, they are processed
in order. If thereare no arguments, the standard input is proces$ba way the program can be used
stand-alone or as part of a larger process.

#irtlu de <stlio .h>

man(agc ,arg v) [/* wc:cou ntlin es, wods, chas *
int arg;
cha *arg/[]
{
int ¢, i, invord

FIE *fp, *fogen{;
lon glin ect ,wor dct,cha rct

lon gtli ned=0, twodd = 0, tclarc t=0;
i=1;
fp=std in;
do {
if (ar gc >1&& (fpfper(agyv| i, "r")) == NUL) {
fpinf(sde rr,"wc :can ‘tope n%s\n" argli D;
coriin ue;
}
lin ect= wordct= charct= inword= 0;
whi le ((c = get(f p)) !'=EOR{
chact ++;
if (c==" \n’)
lirect ++;
if (c==" "] e=" \t |]c=" \n)
inword=0;
els e if (irwor d==0){
inword = 1;
wordct ++;
}
}
prtf"%ld %71 d %7! d", lirect ,wor dct ,cha rcj;
pritfar gc>1 ? "%s\n":" \n" aryli D
fcosdfp;

thhec t += lirect
twodd += wordct
tchart += chact
}whi le(++ i<arg c);
if (agc > 2)
prt{"% 71d %71 d %74 tot al \ n", tihec t, twadd, tcharc t);
ext(Q;
}

The function fpnt is identical topirif , save that the first argument is a file pointer that

specifies the file to be written.

The functionfdse is the inverse of@en ; it breaks the connection between the file pointer
and the external name that was establishedqim , freeing the file pointer for another filéSince
there is a limit on the number of files thapmgrammay have opensimultaneouslyjt's a goodideato
free things when they are no longereded. Thereis also anotherreasonto call fdse on an output
file — it flushes the buffer in whiclpuc is collectingoutput. (fdse is called automatically for
each open file when a program terminates normally.)

32. Error Handling — Stderr and Exit

star is assigned to a program in the same way ¢iat and stlaut are. Outputwritten
on stlar appearson the user’s terminal even if the standard output is redirectedwrites its diag-
nostics onstlar instead ofstlaut so that if one of the files can’t be accessed for some reason, the

messagsdinds its way to the user’'s terminal instead of disappearing down a pipeline or into an output
file.

The program actually signals errors in anotivar, usingthe function ext to terminate program
execution. The argument obxt is availableto whatever process called it (see Section 6), so the suc-
cessor failure of the program can be tested by another program that uses this one as a sub-Byocess.
convention, a return value of 0 signals that all is well; non-zero values signal abnormal situations.

ext itself callsfdse for eachopen output file, to flush out any buffered output, then calls a
routine named—ed . Thefunction—ed causes immediate termination without dnyffer flushing;
it may be called directly if desired.

33. Miscdlan®as IO Functions

The standard 1/O library provides several other 1/O functions besides those walllistvated
above.

Normally output withpuc , etc., is buffered (except ®tlar); to force it out immediately, use

fis(p)

feanf is identical tosarf , except that its first argument is a file pointer (as Vipikt)
that specifies the file from which the input comes; it retl#@s at end of file.
The functionsscanf and spnf are identical tofanf and fpnf , except that the

first argumentamesa characterstring insteadof a file pointer. The conversion is done from the string
for scanf and into it forspnf

feesbu f, ske o) copies the next line fronfp , up to and including a newline, into
bd ; at mostszel characters are copied; it returhBLL at end of file. fjuspu f, 9
writes the string irbd onto filefp .

The functionurgeadc s} “pushes back” the character onto the input strearfp ; a subse-
qguent call togéc , feaf , etc., will encountec. Only one character of pushback per file is permit-
ted.

4. LOW-LEVEL I/IO

This section describes the bottom level of I/O on X system. The lowest level of 1/O in
UNIX provides no buffering or any other services; it is in fact a dieatty into the operatingsystem.
You are entirely on your own, but on the other hand, you have the most control over what happens.
And since the calls and usage are quite simple, this isn't as bad as it sounds.

41. File Desriptass

In the UNIX operating system, all input and output is done by readingriting files, becauseall
peripheral devices, even the user’s terminal, are files in the file sy3tkim.means that a single, homo-
geneous interface handles all communication between a program and peripheral devices.

In the most generalcase,beforereading or writing a file, it is necessary to inform the system of
your intent to do so, a process called “opening” the fileyou are goingto write on afile, it may also

-6 -

be necessaryo createit. The systemchecks your right to do so (Does the file exif?® you have per-
missionto accesst?), andif all is well, returns a small positive integer calledila descriptor. When-
ever I/O is to be done on the file, the file descriptor is used instead of the name to identify the file.
(This is roughly analogous to the use READ(5,...) and WRITE(6,...) in Fortran.) All information about
an open file is maintained by the system; the user program refers to the file only by the file descriptor.

Thefile pointersdiscussedn section 3 are similar in spirit to file descriptors, but file descriptors are
more fundamental.A file pointeris a pointerto a structure that contains, among other things, the file
descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist to
makethis convenient.When the command interpreter (the “shell”) runs a program, it opens three files,
with file descriptorsO, 1, and 2, called the standard input, the standard output, and the standard error
output. All of these are normally connected to the terminal, so if a program reads file desc@ptdr 0
writes file descriptors 1 and 2, it can do terminal I/O without worrying about opening the files.

If /0 is redirected to and from files with and>, as in
pro g <in fil e >ou tfie

the shell changesthe default assignmentdor file descriptors 0 and 1 from the terminal to the named
files. Similar observationsold if the input or output is associated with a pipdormally file descriptor

2 remains attached to the terminal, so error messages can go lthetecases, the filassignmentsre
changed by the shell, not by the prograithe program does not need know whereits input comes
from nor where its output goes, so long as it uses file 0 for input and 1 and 2 for output.

42, Read and Write

All input and output is done by two functions calleld andwie . For both, the first argu-
mentis a file descriptor. The secondargumentis a buffer in your program where the data is to come
from or go to. The third argument is the number of bytes to be transferfée. calls are

n—read = rea(f d, buf ,n);

n—wit ten = wriefd, buf , n);

Each call returns a byte count which tlee number of bytes actually transferred. On reading, the
numberof bytesreturned may be less than the number asked for, because fewer llgtas remained
to be read. (When the file is a terminatead normally reads only up to the next newline, which is
generally less than what was requestedl.yeturn value of zero bytes implies end of file, afd indi-
cates an error of some soffeor writing, the returned value is the numipérbytesactually written; it is
generally an error if this isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrdiye two mostcommon valuesre 1,
which meansone characterat a time (“unbuffered”), and 512, which corresponds to a physical block-
size on many peripheraldevices. This latter sizewill be most efficient, but even character at a time 1/0
is not inordinately expensive.

Putting thesefacts together,we can write a simple program to copy its input to its outpdtis
programwill copy anythingto anything,sincethe input and output can be redirected to any file or dev-
ice.

#ddin e BUFSIZE 512 /* bestsiz for PDR11 UNK */
main() /* copyinp utto out put */

char buf [BUFSEE]

int n;

whi le ((n = real(0 ,buf BUF SIZE))> 0)
wrte(1, buf |, n);

ext(0;

}

If the file size is not a multiple BU-SZA& , someread will return a smaller number of bytes to be
written bywrie ; the next call taead after that will return zero.

It is instructive to see howad andwie can be used to construct higher level routines like
gaha , pudha , etc. For example, here is a version géha which does unbuffered input.

#ddin e CMASK 037/ / * for makng cha rs> 0 */

getha r() /* unlufére d sin gle chaader input */
{

charc;

retirr{(ead (0, &c, 1) >0) ? c&CMASK:EOB;
}

¢ mustbe declaredchar , becausaead accepts a character pointef.he character beingeturned
must be masked witB¥7 to ensure that it is positive; otherwise sign extension may make it negative.
(The constan©0¥7 is appropriate for theDR-11 but not necessarily for other machines.)

The second version dddha does input in big chunks, and hands out the characters one at a
time.

#ddin e CMASK 037/ / * for makng cha rs> 0 */
#ddin e BUFSIZEZ 512

getha r() /* bufer ed vesim *

{
sta tic cha rbuf [BUFSEE]

sta tic cha *buf p = buf

staic int n=0;
if (n==0){ [* buf fer is empy *
n = rea(0 , buf BUF SIZ E);
bup = buf
}
retrr((- -n >=0) ? *buf p++ & CMAK : EOF;

43. Open Creat, Close, Unlink

Other than the default standard input, output and ditesy, you must explicitly openfiles in order
to read or write themThere are two system entry points for tliggn andcea [sic].

open is rather like thef@en discussed in the previous section, except that instead of returning a
file pointer, it returns a file descriptor, which is justi@n .

int fd;

fd = open(rame , rwm ods;

-8-

As with feen , thenane argument is a character string correspondinthéexternalfile name. The
access mode argument is different, howeveimale is O for read, 1 for write, ané for read and
write access.on returns-1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try taopen a file that does not existThe entry pointced is provided to create
new files, or to re-write old ones.

fd = craathame, pmale)

returns a file descriptor if it waable to createthe file called nane , and-1 if not. If the file already
exists,ced will truncate it to zero length; it is not an errordiea a file that already exists.

If the file is brand newgeda creates it with therotection modespecified by thepmode argu-
ment. Inthe UNIX file system, there are nine bits of protection information assoaorathda file, con-
trolling read,write and executepermission for the owner of the file, for the owner’s group, and for all
others. Thusa three-digitoctal number is most convenient for specifying the permissidfar. example,
0755 specifies read, write and execute permission foowhmer,and readand executepermissionfor the
group and everyone else.

To illustrate, here is a simplified version of thRIX utility cp, a program which copies one file
another. (The main simplification is that our version copies only one file, doek not permit the
second argument to be a directory.)

#ddin e NULL O
#ddin e BUF SIZE 512

#ddin e PMODE 064 /* RW for own er, R for graip, oth ers */
man(agc ,arg v) [/* cp:cop yfltof2 *
int arg;
cha *argl(]
{
int f1, f2, n;

char buf [BUFSEE]

if (agc 1=3)
eror(Usge cp fro m to'; NULL);
if((f 1=ope(agyi] »0) ==-1)
eror(cp :can 'tope n%siarg V[1]);
if ((f 2 = cratbry/[2], PMADE))== -1)
eror(cp :can 'tcre ate %s" ,arg V[2]);
whi le ((n = rea(iL, buf ,BUF SIZE))> 0)
if (witgf2 ,buf ,n) 1=n)
eror(cp Swri te eror" , NULL);
ext(0;
}
eror(sl, s2) /* pri nteror mesag e and die *
cha *sl, *s2;
{
prt{sl ,82)
prtf" \ n")
ext(d;
}

As we said earlier, thereis a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must be
prepared to re-use file descriptorshe routinecb® breaks the connection between a file descriptor
and an open file, and frees the file descriptor for use with stimeefile. Terminationof a programvia
ext or return from the main program closes all open files.

-9-

The functionurnKierane) removes the fildieane from the file system.

44. Random Access— Seek and Lsask

File 1/0 is normally sequential: eachread or wie takes place at a position in the file right
after the previous oneWhen necessary, however, a file can be read or writtemyrarbitrary order.
The system calleek provides a way to move around in a file without actually reading or writing:

Isek(fd, offet ,ori gin;

forces the current position in the file whose descriptdidisto move to positionofset , which is
taken relative to the location specified bign . Subsequent reading or writing will begin at that
position. ofset is along ; fd andoign areit ’'s. oign can be 0, 1, or 2 to specify that
ofet is to be measuredrom the beginning,from the current position, or from the end of the file
respectively. For example, to append to a file, seek to the end before writing:

Iseek(fd, OL, 2);
To get back to the beginning (“rewind”),
Iseek(fd, OL, 0);
Notice theOL argument; it could also be written @ g) 0 .

With |k , it is possible to treat files more or less like large arrays, at the price of slower access.
For example, the following simple function reads any number of bytes from any arbitrary place in a file.

getfd , pos buf ,n) [/ * rea n byt esfro mpositi onpos */
int fd, n;
lon g pos ;
cha *buf
Isek(fd, pos , 0); /* getto pos */
retirr{readd, buf 1))
}

In pre-version UNIX, the basicentry point to the I/O system is calleeek . seek is identical to
lek , except that itofet argument is ant rather thanalog . Accordingly,sincePDR11
integers have only 1éits, the ofset specified forseek is limited to 65,535; for this reason,
ofgn values of 3, 4, 5 caussek to multiply the given offset by 512 (the number of bytes in one
physical block) and then interpretgn asif it were0, 1, or 2 respectivelyThus to get to an arbi-
trary placein a large file requirestwo seeks, first one which selects the block, then one which has
ofgn equal to 1 and moves to the desired byte within the block.

45, Error Procesmg

The routines discussed in this section, and in fact all the routines which are direct entribg into
system can incur errordJsually they indicate an error by returning a value-&f Sometimes it is nice
to know what sort of error occurred; for this purpafigheseroutines,whenappropriate)Jeavean error
number in theexternalcell erro . The meanings of the various error numbers are listed in the intro-
duction to Section Il of th&NIX Programmer’s Manualso your program can, for examphgtermine
if an attemptto open a file failed because it did not exist or because the user lacked permission to read
it. Perhaps more commonly, you may want to print out the reason for faillre.routine peor
will print a message associated with the valueewd ; more generallysys—erro is an arrayof
character strings which can be indexedelbgpp and printed by your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one'Jloiwrsection
describes how to execute a program from within another.

-10 -

51. The “System’” Functiom

The easiest way to execute a program from another is to ustatigardibrary routine sysem
sysem takesoneargumenta command string exactly as typed at the terminal (except for the newline
at the end) and executes Eor instance, to time-stamp the output of a program,

mai n()

{
sygen("dcte ");
/* res tof precesiy *

}

If the command string has to be builbm pieces, thean-memoryformatting capabilitiesof spnt
may be useful.

Remember thagec andpuc normally buffer their input; terminal I/@vill not be properly syn-
chronized unless this buffering is defeateldor output, use ffish ; for input, seesahuf in the
appendix.

52. Low-Levd Proces<Creation — Exed and Execv

If you're not using the standardlibrary, or if you need finer control over what happens, you will
haveto constructcalls to other programs using the more primitive routines that the standard library’s
sysem routine is based on.

The most basic operation is to execute another progviahout returning by usingthe routine
exed . To print the date as the last action of a running program, use

exel(/ bin / dat e", "dae" , NULL);

The first argument texed¢ is thefile nameof the command; you have to know where it is found in
the file system. The secondargumentis conventionallythe program name (that is, the last component
of the file name), but this is seldom used except as a place-hdfddre command takes arguments,
they are strung out after this; the end of the list is marked (& argument.

Theexed call overlays the existing program with the new one, runs that,gkién Thereis no
return to the original program.

More realistically, a program might fall into two or more phases ¢bhatmunicateonly through
temporaryfiles. Here it is natural to make the second pass simplgx@h call from the first.

The one exception to the rule that the original program never gets contrabdmaokwhenthereis
an error, for example if the file can’t beund or is not executable. If you don’'t know wheredae s
located, say

exel(/ bin / dat e", "dae" , NULL);
exel([usr / bin / dat e", "dae" , NULL);
fpinf(sde rr, "Seaneo ne stde 'da te’ \n")

A variant of exed called exeev is useful when you don’t know in advance how many argu-
ments there are going to b&@he call is

exeviiena me, arg p);

whereagp is an array of pointers to the arguments; the last pointer irantag must be NULL so
exew can tell where the list endsAs with exed , fismane is the file in which the program is
found, andaggd is the name of the program(This arrangement is identical to tagv array for
program arguments.)

Neither of these routines provides the niceties of normal command executi®here is no
automatic search of multiple directories — you have to know precisely whegoitimandis located.
Nor do you get the expansion of metacharactersdike, *, ?, and[] in the argument list.If you
want these, usexed to invoke the shellsh, which then does all the workConstructa string
cannardire that contains the complete command as it wdwdde beertyped at the terminal, then
say

-11 -

exel(/ bin /sh" ,"sh ", "-¢, conmardli ne, NUL L);

The shell is assumed to be at a fixed plad®, /sh. Itsargumentc says to treat the next argument
as a whole command line, so it does just what you wa&ht only problemis in constructingthe right
information incannardire

53. Control of Processes- Fork and Wait

So far what we've talked about isn't really all thaeful by itself. Now we will show how to
regain control after running a program wéked or exeew . Since these routines simply overlay the
new program on the old one, to save the old one requires that it first be split into two copies; one of
thesecan be overlaid, while the other waits for the new, overlaying program to fini$he splitting is
done by a routine callefibk

pra—i d = fok()

splits the program into two copies, both of whintinue torun. The only difference between the two
is the value ofppe—d , the “process id.” In one of these processes (the “child’hpe—d is
zero. In the other (the “parent”)poe—d is non-zero; it is the process number of the chilthus
the basic way to call, and return from, another program is

if (fak()==0)
exel / bin /sh" ,"sh ", "-¢, cmd , NULL); /* inchid */

And in fact, except for handling erroris is sufficient. The fok makes two copies of the program.
In the child, the value returned ligk is zero, so it call®ed which does theonmard and then
dies. Inthe parent,fok returns non-zero so it skips tleed. (If there is any errorfok returns
-1).

More often, the parent wants to wait for the child to terminate before continuing if¢e#.can be
done with the functionvat

int stdus

if (fok() ==0)
exel(.);
wal(&tdus;

This still doesn’t handle any abnormal conditions, such as a failure ebathe or fok , or the pos-
sibility that there might be more than one child running simultaneoy3lge wat returns the process
id of the terminatedchild, if you want to check it against the value returnedfdy .) Finally, this
fragment doesn’t deal with any funny behavior on the part of the child (which is repodatsn).
Still, these three lines are the heart of the standard librag#sn routine, which we’ll show ina
moment.

The satis returned bywat encodedn its low-order eight bits the system'’s idea of the child’s
termination status; it is O for normal termination and non-zero to indicate vadiiods of problems.
The next higher eight bits are taken from the argument of the calitto which caused a normal ter-
mination of the child procesdt is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the threediscriptorsO, 1, and 2 are setup pointing at
the right files, and all other possible file descriptors are available for \Wen this program calls
another one, correct etiquette suggests making sure the same conditiondNéitihetr fok nor the
exec calls affectsopenfiles in any way. If the parent is buffering output that must come out before
output from the child, the parent must flush its buffers beforeethé . Conversely, if a caller
buffers an input stream, the called program will lose any information that has been read by the caller.

-12 -

54. Pipes

A pipe is an I/O channel intended for use between two cooperating procemsegrocessvrites
into the pipe, while the other readdS.he system looks after buffering the data and synchronizing the
two processes.Most pipes are created by the shell, as in

Is | pr

which connects the standard outputlof to the standard input qfr . Sometimes, however, it is most
convenient for a process to set up its own plumbing; in this sectiomjlivélustrate how the pipe con-
nection is established and used.

The system calppe createsa pipe. Sincea pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd[2J;

sta t = pipe(f d);
if (st at==-1)
/ * thee was an err or ... */

fd is an array of two file descriptors, whet) is the read side of the pipe aft] is for writ-
ing. These may be used rmd , wie andcb® calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a
pipe which is too full, it will wait until the pipe emptie®mewhat. If the write side of the pipe is
closed, a subsequersad will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
ppeatm d, male , which creates a processd (just assysem does), and returns a file descrip-
tor that will either read or write that process, accordin@e . That is, the call

fou t = pon(pr ", WRTE)

creates a process that executes ghe command; subsequentie calls using the file descriptor
fait will send their data to that process through the pipe.

pper first creates the the pipe withppe system call; it therfak s to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the pipe, then
calls the shell (vie»ed) to run the desired proces3he parent likewise closes tlead of the pipe it
doesnot use. Theseclosesare necessanto make end-of-file tests work properlyzor example, if a
child that intends to read fails to close the write end of the pipe, it will never see the end of the pipe
file, just because there is one writer potentially active.

13-

#irclu de <stio .h>

#ddin e READ 0

#ddin e WRITE1

#ddin e tst (a,b) (mo de==READ 2 (b): (a)
sta tic int pop en—pid ;

pop en(cmd, mod e)
cha *cmd
int mod e;

{
int p[2;
if (ppep) < 0)
returr(NU.L)
if (mper—pd = fok() == 0) {
cleets{pWWRTE] , p[R EAD))
cleetst 0, 1))
dugts(dREAD] , W RITE]);
cleefs{pREA D], p[WRITE]);
exell /bin /sh","sh " "¢, cmd , 0);
—eit(1); /* disst er has ocarr ed if we get hee */
}
if (pen—pi d== -1)
retrr(NULL)
clsefstpREA D], p[\RITE));
reurr(ts(QWRTE 1, p[FEAD))
}

The sequence afbe s in the child is a bit tricky.Suppose that the task is to createhild process
that will read data from the parenfhen the firsitcb® closes the write side of the pipe, leaving the
read side openThelines

clse(st O, 1))
dugts(dREAD] , pIW RITE]);

are the conventional way to associate the pipe descriptor with the standard inputcbfldheThe
cbe closes file descriptor 0, that is, the standard inglip is a system call that returns a duplicate
of an already open file descriptoFile descriptors are assigned in increasing oageithe first available
one is returned, so the effect of thgp is to copy the file descriptor for the pipe (read side) to file
descriptor 0; thus the read side of the pipe becomes the standard (vipsit.this is a bitricky, but it's

a standard idiom.)Finally, the old read side of the pipe is closed.

A similar sequencef operations takes place when the child process is supposed to write from the
parent instead of readingrou may find it a useful exercise to step through that case.

The job is not quite done, for we still need a functptse to close the pipe created by
p@er . The main reason for using a separfatection ratherthancb®e s that it is desirable to wait
for the termination of the child processirst, the return value fromdse indicates whether the pro-
cesssucceeded. Equally important when a process creates several children is that only a bounded
number of unwaited-for children can exist, evesameof them haveterminated;performingthe wat
lays the child to restThus:

- 14 -

#irclu de <sgnd.b»

pcbs€fd I * clse pip efd */
int fd;
{
regst err, (*hsat) (), (*isat)), (*gsat) ();

int sta tus ;
ext ern int pop en—pid

clse(d)
ist at = siqa(SGINI, SIG—IG N);
gsat = siga(SGQU IT, SIG-IG N);
hst at = signa(SGHLP, SIG—IG N);
whie ((r = wai(&tdug) I = pop en—pid && r 1=-1)
if (r ==-1)
sta tus =-1;

siqa(SGIN T, isht)
siga(SGQU IT, gsat)
signa(SGHU P, hsat)
retirr(satu S);

}

The calls tosgral make sure that no interrupts, etc., interfere with the waiting process; this is the
topic of the next section.

The routine as written has the limitation that only one pipe may be omsrcabecausef the sin-
gle sharedvariable pen—pd ; it really should be an array indexed by file descriptér.p@en
function, with slightly different arguments and return value is availablpaasof the standardl/O
library discussed belowAs currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This sectionis concernedwith how to deal gracefully with signals from the outside world (like
interrupts),and with program faults. Since there’s nothing very useful that can be done from within C
about program faults, which arise mainly from illegal memory references orexecutionof peculiar
instructions, we’ll discuss only the outside-world signalsterrupt, which is sent when theEL charac-
ter is typed;quit, generated by th&S character;hangup caused by hanging up the phone; aed
minate generated by thé&ill command. When one of these events occurs, the signal is seatl to
processesvhich were startedfrom the corresponding terminal; unless other arrangements have been
made, the signal terminates the procelssthe quit case, a core image file is written for debugging pur-
poses.

The routine which alters the default action is callgplal . It hastwo arguments: the first
specifies the signal, and the second specifies how to tredhd.first argument is just mumbercode,
but the second is the address is either a function, or a somewhat strange code that requests that the sig-
nal either be ignored, or that it be given the default actiorifhe include filesgralh gives names
for the various arguments, and should always be included when signals arélbsed.

#irclu de <sgnd.t»

sigqa(SGINI, SIG—IG N);
causes interrupts to be ignored, while
signa(SGIN T, SIG-DF L);

restores the default action of process terminationall casessgral returns the previous value of
the signal. The second argument tiral may insteadbe the name of a function (which has to be
declaredexplicitly if the compilerhasn’tseen it already).In this case, the named routine will be called
when the signal occurs. Most commonly this facility is used to allow the program to clean up
unfinished business before terminating, for example to delete a temporary file:

- 15 -

#irclu de <sgnd.b»

mai n()

{
int onntr 0;
if (sgnd(SGl NT, SIG—IN) I =SIG —IN)

signa(SGIN T, onnt;

/* Prexes s.. *
ext(0;

}

onitg)

{
uninKtempfig;
ext(D;

}

Why the test and the double call $gral ? Recall that signals like interrugre sentto all
processes started from a particular termin&tcordingly, when a program is to be run non-interactively
(started by&), the shell turns off interrupts for it so it won’t be stopped by interrupts intended for fore-
ground processeslf this program began by announcing that all interrupts were to be sent to the
onrr routine regardless, that would undo the shell’s effort to protect it when run in the background.

The solution,shownabove,is to test the state of interrupt handling, and to continue to ignore inter-
ruptsif they are already being ignored:he code as written depends on the fact sl returns
the previousstateof a particularsignal. If signals were already being ignored, the process should con-
tinue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a regtmst to
whatit is doing and return to its own command-processing lodpink of a text editor:interrupting a
long printout should not cause it to terminate and lose the work already dtmeeutline of the code
for this case is probably best written like this:

#irclu de <sgnd.b»
#irclde <sdjnp.h»

jmp—buf sjlf;
mai n()
{
int (*isat)), onntr 0;
ist at = siqa(SGINI, SIG—IG N); /* saveori gin alsta tus */
sefmgspuj; /* savecur rentsta ckposton *
if is tat !=SIG —IN)

signa(SGIN T, onint;

/* mainpro cesin gloo p */

}
onntr)
{
prtf" \ nirterug \n")
lorgjnp(gbu f); /* ret untosav ed stde *
}

The include filesamph declares the typgmp—bd an object in which the state can be saved.
shu is such an object; it is an array of some sdrhe sdimp routine then saves the state of

- 16 -

things. When an interrupt occurs, a call is forcedthe onrir routine, which can print a message,
set flags, or whateverlognp takes as argument an object stored ioyjosémp , and restores
control to the location after the call te¢gmp , so control (and the stack level) will pop back to the
place in the main routine where the signal is set up and the main loop enttick, by the way, that
the signal gets set again after an interrupt occiitss is necessary; most signalse automaticallyreset

to their default action when they occur.

Some programs that want to detect signals simply can&tdygpedat an arbitrary point, for exam-
ple in the middle of updating a linked listf the routine called on occurrence of a signal sets aaftag
then returns insteadf calling et or loxgnp , execution will continue at the exact point it was
interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approa8upposethe programis reading theterminal
when the interruptis sent. The specified routine is duly called; it sets its flag and retulh#&. were
really true, as we said above, that “execution resumes agxhetpoint it was interrupted,” the pro-
gram would continue reading the terminal until the user typed anotherTime.behaviormight well be
confusing, since the user might not know that the progsmading;he presumablywould prefer to
havethe signaltake effectinstantly. The method chosen to resolve this difficulty is to terminate the ter-
minal readwhen executionresumes after the signal, returning an error code which indicates what hap-
pened.

Thus programs which catch and resume execution after signals should be prepared for “errors”
which are causedby interrupted system calls(The ones to watch out for are reads from a terminal,

wat , andpai®e .) A program whoseonrir program just setgifay , resets the interrupt sig-
nal, and returns, should usually include code like the following when it reads the standard input:
if (getchar() == EOBR
if (irtfl ag)
| * EOF cawsed by inerr upt */
ele
/* tru e end -offie *

A final subtletyto keepin mind becomes important when signal-catching is combined with execu-
tion of other programs. Suppose a program catches interrupts, and also includes a method (like “!” in
the editor) whereby other programs can be executdrnthe codeshouldlook somethinglike this:

if (fok()==0)

exel(.);
siga(SGIN T, SIG—IG N); /* ign ore inerups */
wal(&taus; /* unt il the chid is dore *
sigqa(SGINT, onntj; /* regor eint erups */

Why is this? Again, it's not obvious but not really difficultSuppose the program you call catches its
own interrupts. If you interruptthe subprogram, it will get the signal and return to its main loop, and
probablyreadyour terminal. But the calling program will also pop out of its wét the subprogram
andreadyour terminal. Having two processes reading your terminal is very unfortunate, since the sys-
tem figuratively flips a coin to decide who should get each line of inpAt.simple way out is to have

the parent program ignore interrupts until the child is dofkis reasoningss reflectedin the standard

I/O library functionsysem

-17 -

#irclu de <sgnd.b»

sygem (s) /* runcomman dstr ings */
cha *s;
{

int staus ,pid ,w;

regst erint(* isht) 0,(*qgsat) O(;

if ((pd = fok() == 0) {

exel(/ bin /sh" ,"sh ", "-c "/s,0);
—ext(27;
}
isat = siga(SGINT, SIG—IG N);
gsat = siga(SGQU IT, SIG-IG N);
whi le ((w = wai(&taug) I=pid&& w!=-1)
if (w==-1)
sta tus =-1;

signa(SGIN T, istt)
sina(SGQU IT, gsat)
retrr(satu S);

}

As an aside on declarations, the functsynal obviously has a rather strange second argument.
It is in fact a pointer to a function delivering an integer, and this is also the type of the signal routine
itself. The two valuesSG—HGN and SG—DH. have the right type, but are chosen so they coincide
with no possible actual functiongzor the enthusiast, here is how they dedinedfor the PDP-11;the
definitions should be sufficiently ugly and nonportable to encourage use of the include file.

#ddin e SIG —DE (in t(*)()0
#ddin e SIG —IQN (in t(*)01

Refepmmes

[1] K. L. Thompson and D. M. Ritchi§he UNIX Programmer’s ManualBell Laboratories, 1978.
[2] B. W. Kernighan and D. M. Ritchidhe C Programming LanguagBrentice-Hall, Inc., 1978.
[3] B. W. Kernighan, ‘UNIX for Beginners — Second Edition.’Bell Laboratories, 1978.

- 18 -

Appendix — The Standard I/O Library

D. M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974
The standard 1/O library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in spadbastherewill be no hesitationin
using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysteriowshoaksise mars
the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whethest ¢he programswhich
implement it are directly portable to other systems, anazhinesotherthanthe PDP-11runninga
version ofUNIX.

1. Gemsra Usage
Each program using the library must have the line
#irclu de <stio .h>

which definescertain macrosand variables. The routines are in the normal C library, so no special
library argumentis neededfor loading. All names in the include file intended only for internal use
begin with an underscore-to reduce the possibility of collision with a user nanide namesintended

to be visible outside the package are

stin The name of the standard input file

staut The name of the standard output file

stlar The name of the standard error file

ECF is actually—1, and is the value returned by the read routines on end-of-file or error.
NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an error
FLE expands testu ct—ob and is a useful shorthand when declaring pointers to streams.

BUFSZ is a number (viz. 512) of the size suitable for an /0O buéigpplied by the user. See
saluf | below.

gdéc , gada r, puc , puda r, feof , feor fimo
are defined as macrosiheir actions are described below; they are mentioned here to point
out thatit is not possible to redeclare them and that they are not actually functions; thus, for
example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocatiautpadiflushing
where appropriate.The namesstih , staut , andster are in effect constants and may not be
assigned to.

2. Calls
FLE *fpefiemane , tyé char * fimane *type
opensthe file and, if needed, allocates a buffer for fimane is a character string specifying

the name. type is a characterstring (not a single character)t may be"t , "W , or"d to
indicate intent to read, write, or appentlhe value returnedis a file pointer. If it is NULL the
attempt to open failed.

FLE *fe@efimane , type ipt r) char * fismane *type ; FLE * iqt;
The stream named bigpt is closed, if necessary, and then reopened as figgy . If the
attempt to open failsNUW.L is returned,otherwiseipt , which will now refer to the new file.

Often the reopened streamsign or staut

- 19 -

in t gacop) FLE * iqt;
returns the next character from the streammedby it , which is a pointer to a file such as
returned byfpen , or the namestih . Theinteger ECF is returned on end-of-filer when an
erroroccurs. The null character 0 is a legal character.

in t fet(mt r) FLE * iqt;
acts likegdc butis a genuine function, not a macro, so it can be pointed to, passed as an argu-
ment, etc.

pudc ,ipt r) FLE * iqot;
puc writes the charactec on the output stream named Bpt , which is a value returned
from fpen or perhapsstaut or stler . The character is returned as value, B@F is
returned on error.

faue(c, ipt) FLE * iqt;
acts likepuc but is a genuine function, not a macro.

fdsdopr) FLE * iqot;
The file corresponding tapt is closed after any buffers are emptiefl.buffer allocated by the
I/O system is freedfdse is automatic on normal termination of the program.

fitsHopr) FLE * iqot;

Any buffered information on the (output) stream namedquy is written out. Output files are
normally bufferedif and only if they are not directed to the terminal; howestgrr always
starts off unbuffered and remains so unkesiuf is used, or unless it is reopened.

extecale;
terminates the process and returns its argument as status to the paisnts aspecialversion of
the routine which calléfish for each output file.To terminate without flushing, use-ed

feofopr) FLE * iqt;
returns non-zero when end-of-file has occurred on the specified input stream.
feoopr) FLE * iqot;

returns non-zero when an error has occurred while reading or writing the named sttearrror
indication lasts until the file has been closed.

gedai;
is identical toge€gdn)
pudac)
is identical topugc , st}
char *feges(s, n, igt) char *s; FLE * iqt;
reads up tond characters from thastreamiqt into the character pointes. The read ter-

minateswith a newline character. The newline character is placed in the buffer followed by a null
character. fees returns the first argument, dBHULL if error or end-of-file occurred.

fus(s, igt) char *s; FLE * iqot;
writes the null-terminated string (character arraygn the streanipt . No newline is appended.
No value is returned.

urgedc i@t 1) FLE * iqt;
The argument characteris pushed back on the input stream namedqity . Only one charac-
ter may be pushed back.

pirifbma t,tal ,.. .)char * fomat
fpnf{opt, fonat ,al . .) FLE * igot; char * farat
spint6, fonmat ,al .xhar *s, *famat
pirif writes on the standard outpufpnf writes on the named outpatream. spnf

puts characters in the character array (string) namesl. byhe specifications are as described in
sectionpirif (3) of theUNIX Programmer’s Manual.

- 20 -

sarftonat ,al .. .) char * fonat
feanfopr , famat aj, .. .) FLE *igot; char * famat
seafs , famat al, .. .) clar *s, *famat

sarf reads from the standard inpufsanf reads from the named input streamsaf

reads from the character string suppliedsassarf reads characters, interprets them according to
a format, and stores the results in its argumeR&ch routine expects as argumeatsontrol string
fomat , anda set of argumentgach of which must be a pointéndicating where the converted
input should be stored.

sarf returnsas its value the number of successfully matched and assigned input famsan

be used to decide how many input items were fouldd. end of file,ECF is returned; note that this

is different from 0, which means that the next input character does not match what was called for in
the control string.

fealpt r, skeof *pt) |, niens i@t r) FLE * iqt;
readsntans of data beginning git from fileigpt . No advance notification that binary I/O
is being done is required; when, for portability reasons, it becomes required, it will be done by
adding an additional character to the mode-string origlae call.

fwriedr , Skeof * pt) nians igt r) FLE * iqt;
Like feal , but in the other direction.
revhdopr) FLE * iqot;
rewinds the stream named gt . It is not very useful except on input, sinceesvoundoutput
file is still open only for output.
sysen(din g) char * sthg
The sthg is executed by the shell as if typed at the terminal.
geawopr) FLE * iqt;
returnsthe next word from the input stream named gt . ECF is returned on end-of-file or

error, but since this a perfectly good intef@f andfaor should be usedA “word” is 16
bits on thePDP-11.

puww i@t r) FLE * iqt;
writes the integew on the named output stream.

setufopr ,bu f) FLE * igot; char * bd;
sehuf may be used after a stream has been opened but befonad&tarted. If bd is NUL,
the streamwill be unbuffered. Otherwise the buffer supplied will be usett. must be a character
array of sufficient size:

char buf [BWSI Z];

fiendopr) FLE * iqot;
returns the integer file descriptor associated with the file.

fedkpt r, ofet , ptram e) FLE *igt; lang ofet
The location of the next byte in the stream namediqbty is adjusted. ofet is a long
integer. If ptrane is 0, the offset is measured from the beginning of the filptrine is 1,
the offset is measured from the current read or write pointgtrime is 2, the offset is meas-
ured from the end of the fileThe routine accountsproperly for any buffering. (When this routine
is used on notNIX systems, the offset must be a value returned fielm and the ptrname
must be 0).

lo ng feligpt) FLE * iqpt;
The byte offset, measured from the beginning of the file, associated with the named istream
returned. Any buffering is properly accounted foifOn nonuUNIX systems the value dhis call is
useful only for handing téee , soas topositionthefile to the same place it was whéal
was called.)

-21 -

gapv(i d, bd) char * bu;
The passwordfile is searchedor the given integer user IDIf an appropriate line is found, it is
copiedinto the character arrdyf , and O is returnedlf no line is found corresponding to the user
ID then 1 is returned.

ctar * mdbcnun);
allocatesnum bytes. The pointer returned is sufficiently well aligned to be usable for any purpose.
NULL is returned if no space is available.

clar *cdbdrum , SE6);
allocates space famum items each of sizeke . The spaceis guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purposdlLL is returned if no space is

available .
cfeept r) char *pt;
Spaceis returnedto the pool used bgdbc . Disorder can be expected if the pointer was not

obtained fromcdbc
The following are macros whose definitions may be obtained by includipgh>

iphac) returns non-zero if the argument is alphabetic.

isipe€) returns non-zero if the argument is upper-case alphabetic.

isave€) returns non-zero if the argument is lower-case alphabetic.

i<lgi€) returns non-zero if the argument is a digit.

is@et) returns non-zero if the argument is a spacing charad#dy; newline, carriage return,
vertical tab, form feed, space.

ipundc) returnsnon-zero if the argument is any punctuation character, i.e., not a space, letter,
digit or control character.

ihum() returns non-zero if the argument is a letter or a digit.

iime) returns non-zero if the argument is printable — a letter, digit, or punctuation character.
i<rte) returns non-zero if the argument is a control character.

ia<gi€) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.
tapet) returns the upper-case character corresponding to the lower-case.letter

tdave€) returns the lower-case character corresponding to the upper-case .letter

A Tutorial Introduction to ADB

J. F. Maranzano
S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Debuggingtools generally provide a wealth of information about the inner work-
ings of programs.These tools have been availableunnxt to allow users to examine
“core” files that result from aborted program# new debuggingrogram,ADB, pro-
vides enhancectapabilitiesto examine'core' and other program files in a variety of
formats, run programs with embedded breakpoints and patch files.

ADB is an indispensabléut complex tool for debugging crashed systems and/or
programs. This documentprovidesan introductionto ADB with examples of its use.
It explains the various formatting options, techniques for debugging C programs, exam-
ples of printing file system information and patching.

May 5, 1977

TUNIX is a Trademark of Bell Laboratories.

A Tutorial Introduction to ADB

J. F. Maranzano
S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

ADB is a new debugging program thiatavailableon UNIX. It providescapabilitiesto look at
“core” files resulting from abortedprograms,print output in a variety of formats, patch files, and run
programswith embeddedreakpoints. This documentprovidesexamplesof the more useful features of
ADB. The reader is expected to be familiar wilte basiccommandson unixt with the C language,
and with References 1, 2 and 3.

2. A Quick Survey

2.1. Invocation
ADB is invoked as:

adb objfile corefile

where objfile is an executable UNIX file andorefileis a core image file.Many times this will look
like:

adb a.out core
or more simply:
adb

where the defaults amoutand core respectively. The filename minus (-means ignore this argument
as in:

adb — core

ADB hasrequests for examining locations in either filéhe ? request examines the contents of
objfile, the / request examines tteorefile. The general form of these requests is:

address ? format
or

address / format

2.2. Current Address

ADB maintainsa current address,called dot, similar in function to the current pointer in the
UNIX editor. When an address is entered, the current address is set to that location, so that:

01267
sets dot to octal 126 and prints the instruction at that addfiéss.request:

TUNIX is a Trademark of Bell Laboratories.

.,10/d

prints 10 decimal numbers starting at dobot ends up referring to the address of the last item printed.
When used with th@ or / requeststhe current address can be advanced by typing newline; it can be
decremented by typing

Addressearerepresentedhy expressions.Expressionare made up from decimal, octal, and hex-
adecimal integers, and symbols from the program under Téstse may beombinedwith the opera-
tors +,—, *, % (integer division), & (bitwise and), (bitwise inclusiveor), # (roundup to the next mul-
tiple), and~ (not). (All arithmetic within ADB is 32 bits.) When typing a symboli@ddressfor a C
program, the user can typameor _name;ADB will recognize both forms.

2.3. Formats

To print data,a userspecifiesa collection of letters and characters that describe the format of the
printout. Formats aré'rememberet in the sensethat typing a request without one will cause the new
printout to appear in the previous formathe following are the most commonly used format letters.

(o

one byte in octal

one byte as a character

one word in octal

one word in decimal

two words in floating point
PDP 11 instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a newline

print a blank space

backup dot

>SS S C QO TT™HTO 00

(Format letters are also available ftwng" values, for example D’ for long decimal, andF’ for dou-
ble floating point.) For other formats see the ADB manual.

2.4. General Request Meanings
The general form of a request is:

address,count command modifier

which sets ‘dot’ tcaddressand executes the commaadunttimes.
The following table illustrates some general ADB command meanings:

Command Meaning
? Print contents from a.outfile
Print contents from corefile
Print value of "dot"
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

S~

ADB catches signals, so a user cannot use a quit signal to exit from AbB8request$q or $Q
(or cntl-D) must be used to exit from ADB.

3. Debugging C Programs

3.1. Debugging A Core Image

Consider the C program in Figure The program is used to illustrate a common error made by C
programmers. The object of the program is to change the lower ¢Hséo upper case in the string
pointed to bycharp and then write the character string to the file indicated by argumeithé.bug
shown is that the charactéF" is stored in the pointecharp instead of the string pointed to leharp.
Executing the program produces a core file because of an out of bounds memory reference.

ADB is invoked by:
adb a.out core
The first debugging request:
$c

is used to give a C backtrace through the subroutines cafledshown in Figure 2 onlgne function
(main) was called and the argumerdsgc and argv have octal values 02 and 0177762 respectively.
Both of these values look reasonable; 02 = swguments0177762= addresson stack of parameter
vector.

The next request:

$C

is used to give a C backtrace plus an interpretatioallahe local variablesn eachfunction and their
values in octal. The value of the variablec looks incorrect sincec was declared as a character.

The next request:
$r

prints out the registersincluding the programcounter and an interpretation of the instruction at that loca-
tion.

The request:
$e

prints out the values of all external variables.

A map exists for each file handled by ADBhe map for the.outfile is referenced b® whereas
the map forcore file is referenced by. Furthermore, a good rule of thumb is to &séor instructions
and/ for data when looking at programd.o print out information about the maps type:

$m

This produces a report of the contents of the madydsre about these maps later.
In our example, it is useful to see the contents of the string pointeddioapy. This is done by:

*charp/s

which says useharp as a pointer in theore file and print the information as a character strifithis
printout clearly showsthat the character buffer was incorrectly overwritten and helps identify the error.
Printing the locations arouncharp shows that the buffer is unchanged but that the pointer is destroyed.
Using ADB similarly, we could print information about the arguments to a funcfidm request:

main.ar gc/d

prints the decimatoreimage value of the argumeatgc in the functionmain.
The request:

*main.argv,3/0

prints the octal values of the three consecutive cells pointed &wgwin the functionmain. Note that
these values are the addresses of the arguments to ianefore:

0177770/s

-4 -

prints the ASCII value of the first argumennother way to print this value would have been
*"/s

The" means ditto which remembers the last address typetljs casemain.argc; the * instructs ADB
to use the address field of tberefile as a pointer.

The request:
=0

prints the current address (not its contents) in octal which hasdetenthe addres®f the first argu-
ment. The current address, dot, is used by ADB'remembet its currentlocation. It allows the user
to reference locations relative to the current address, for example:

—10/d

3.2. Multiple Functions

Consider the C program illustrated in Figure Bhis program callsunctionsf, g, and h until the
stack is exhausted and a core image is produced.

Again you can enter the debugger via:
adb

which assumes the namasut and core for the executable file and core image file respectivdliie
request:

$c

will fill a page of backtrace referencesftog, and h. Figure 4 shows an abbreviated list (typiD&L
will terminate the output and bring you back to ADB request level).

The request:
,5$C
prints the five most recent activations.
Notice that each functiorf,§,h) has a counter of the number of times it was called.
The request:
fent/d

prints the decimal value of the counter for the funcfiorSimilarly gcntandhcnt could be printed.To
print the value of an automatic variable, for example the decimal value iafthe last call of the func-
tion h, type:

h.x/d

It is currently not possible in the exported version to print stack frames othethianost recent
activation of a function.Therefore, a user can print everything wi@ or the occurrence of a variable
in the most recent call of a functiont is possiblewith the $C request, however, to print the stack
frame starting at some addressaddress$C.

3.3. Setting Breakpoints

Consider the C program in Figure This program, which changes talmdgo blanks,is adapted
from Software Tooldby Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:
adb a.out —
Breakpoints are set in the program as:

address.b [request]

The requests:

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functioftsdoes not generate statement labeltiereforeit is
currently not possibleto plant breakpoints at locations other than function entry points without a
knowledge of the code generated by the C compilére above addresses are enteredyashol+4 so
thatthey will appearin any C backtrace since the first instruction of each function is a call to the C save
routine €sV). Note that some of the functions are from the C library.

To print the location of breakpoints one types:
$b

The display indicates aount field. A breakpoint is bypassedount—1 times before causing stop.
The commandfield indicates the ADB requests to be executed each time the breakpoint is encountered.
In our example neommandields are present.

By displaying the original instructions at the functiegttabwe see that the breakpoint is set after
the jsr to the C save routindVe can display the instructions using the ADB request:

settab,5%ia

This request displays five instructions startingsetttabwith the addresses of each location displayed.
Another variation is:

settab,5?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses frona.ing file with the ? command. In general when
asking for a printout of multiple items, ADB will advance the current address the number of bytes
necessaryto satisfy the request;in the above example five instructions were displayed and the current
address was advanced 18 (decimal) bytes.

To run the program one simply types:
r
To delete a breakpoint, for instance the entry to the funstittab,one types:
settab+4:d
To continue execution of the program from the breakpoint type:
:c
Once the program has stopped (in this case at the breakpoifipen), ADB requests can be
used to display the contents of memofRor example:

$C
to display a stack trace, or:

tabs,3/80
to print three lines of 8 locations each from the array cailbd. By this time (atlocationfopen)in the
C program settabhas been called and should have set a one in every eighth locatadys.of

3.4. Advanced Breakpoint Usage
We continue execution of the program with:

.C

-6 -

See Figure 6b.Getcis calledthree times andthe contents of the variablein the functionmain are
displayed each timeThe single character on the left hand edge isotitputfrom the C program. On
the third occurrence afetcthe program stopsWe can look at the full buffer of characters by typing:

ibuf+6/20c
When we continue the program with:
e
we hit our first breakpoint dabpossince there is a tab following th&his" word of the data.

Several breakpoints dahbposwill occur until the program has changed the tab into equivalent
blanks. Since we feel thatabposis working, we can remove the breakpoint at that location by:

tabpos+4:d
If the program is continued with;
:C
it resumes normal execution after ADB prints the message

a.out:running

The UNIX quit and interrupt signals act on ADB itself rather than on the prodraimg
debugged. If such a signal occurs then the program being debugged is stapdedntrol is returned
to ADB. The signal is saved by ADB and is passed on to the test program if:

:C
is typed. This canbe useful when testing interrupt handling routin€ghe signal is not passed on to the
test program if:

i«c O
is typed.

Now let us reset the breakpointssttabanddisplay the instructions located there when we reach
the breakpoint. This is accomplished by:

settab+4:b settab,5%7ia *

It is alsopossibleto execute theADB requests for each occurrence of the breakpoint but only stop after
the third occurrence by typing:

getc+4,3:b main.c?C *

This request will print the local variablein the functionmain at each occurrence of the breakpoint.
The semicolon is used to separate multiple ADB requests on a single line.
Warning: settinga breakpointcauses the value of dot to be changed; executing the program under
ADB does not change dofTherefore:
settab+4:b .,5%ia
fopen+4:b
will print the last thing dot was set to (in the examfapen+4 not the current locationsgttab+4 at
which the program is executing.

* Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these statements must
be written as:

settab+4:b settab,5%ia;0
getc+4,3:bmain.c?C;0
settab+4:b settab,5%ia; ptab/o;0

Note that;0 will set dot to zero and stop at the breakpoint.

-7-

A breakpoint can be overwritten without first deleting the old breakpdiot. example:
settab+4:b settab,5%ia; ptab/o *

could be entered after typing the above requests.
Now the display of breakpoints:

$b

shows the above request fihre settab breakpoint. When the breakpoint aettabis encountered the
ADB requests are executedNote that the location asettab+4has been changed to plant the break-
point; all the other locations match their original value.

Using the functionsf, g and h shown in Figure 3, we can follow the execution of each function
by planting non-stopping breakpointsWe call ADB with the executable program of Figure 3 as fol-
lows:

adb ex3 -
Suppose we enter the following breakpoints:

h+4:b hent/d; h.hi/; h.hr/
g+4:b gent/d; g.gi/; g.gr/
f+4:b fent/d; f.fif; f.fr/
r

Each request line indicates that the variables are printeéédimal (by the specificationd). Sincethe
format is not changed, tliecan be left off all but the first request.

The output in Figure 7 illustrates two pointEirst, the ADB requesti the breakpointline are
not examined until the program under test is run. That means any errors in those ADB requests is not
detected until run time At the location of the error ADB stops running the program.

The second point is the way ADB handles register variable®B usesthe symbol table to
addressvariables. Register variables, lik&fr above, have pointers to uninitialized places on the stack.
Therefore the messagdsymbol not found".

Another way of getting at the data in this example is to print the variables used in the call as:

f+4:b fent/d; f.af; fb/; ffi/
g+4:b gent/d; g.p/; g.4qf; g.gi/
:C

The operator / was used instead ofd?readvaluesfrom the corefile. The output for each function, as
shown in Figure 7, has the same form&br thefunction f, for example, it shows the name and value
of the externalvariablefcnt. It also shows the address on the stack and valdkeeofariablesa, b and
fi.

Notice that the addresses on the stack will continue to decrease until no address Iefatar
program execution at which time (after many pages of output) the program under test Aldigslay
with names would be produced by requests like the following:

f+4:b fent/d; f.aa="d; f.b/*b="d; f.fi/*fi="d
In this format the quoted string is printed literadigd the d produces a decimal display of the variables.
The results are shown in Figure 7.
3.5. Other Breakpoint Facilities
« Arguments and change of standard input and output are passed to a program as:
or argl arg2 ... <infile >outfile

This request kills any existing program under test and staris.digafresh.

-8-

e The program being debugged can be single stepped by:
'S
If necessary, this request will start up the proghkmimg debuggedand stop after executingthe first
instruction.
 ADB allows a program to be entered at a specific address by typing:

address:r

e The count field can be used to skip the firéireakpoints as:
nir
The request:
nic

may also be used for skipping the finsbreakpoints when continuing a program.

e A program can be continued at an address different from the breakpoint by:

address.c

e The program being debugged runs as a separate process and can be killed by:
k

4. Maps

UNIX supportsseveralexecutabldile formats. These are used to tell the loader how to Idhd
program file. File type 407 is the most common and is generated by a C compiler invocatioassach
pgm.c. A 410 file is produced by a C compiler commandhaf form cc -n pgm.c, whereas a 411 file
is produced bycc -i pgm.c. ADB interprets these different file formats and provides access tdifthe
ferent segments through a set of maps (see Figur@@)rint the maps type:

$m

In 407 files, both text (instructions) and data are intermixelis makesit impossiblefor ADB to
differentiate data from instructions and some of the printed symbolic addresses look incoredfor
ple, printing data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated from datZ @wdesses the data part of
the a.outfile. The?* request tells ADB to use the second part ofttapin the a.outfile. Accessing
data in thecore file shows the data after it was modified by the execution of the progkiotice also
that the data segment may have grown during program execution.

In 411 files (separated | & D spac#)e instructionsand dataare also separated.However,in this
case, since data is mapped through a separate set of segmentation registers, the base of the data segment
is also relative to address zertn this case since the addresses overlap it is necessary to uge the
operator to access the data space ofatbatfile. In both 410 and 411 files the corresponding core file
does not contain the program text.

Figure 9 showsthe displayof three maps for the same program linked as a 407, 410, 411 respec-
tively. Theb, e, andf fields are used by ADB to map addresses into file addre§ges.'f1" field is
the length of the header at the beginning of the(€RD bytesfor an a.out file and 02000 bytes for a
core file). The "f2" field is the displacement from the beginning of the file to the data.a 407 file
with mixed text and data this is the same as the length of the header; for 410 and 411 files this is the
length of the header plus the size of the text portion.

The "b" and"e" fields are the starting and ending locations for a segm@ivten an addressA,
the location in the file (eithex.outor core) is calculated as:

-9-

bl<Ac<el = file address = (A—b1)+f1
b2<A<e? = file address = (A—b2)+f2

A usercanaccess locations by using the ADB defined variablHse $v request prints the variables ini-
tialized by ADB:

b base address of data segment
d length of the data segment

S length of the stack

t length of the text

m execution type (407,410,411)

In Figure 9 those variables not present are zetise can be made of these variables by expres-
sions such as:
<b

in the address fieldSimilarly the value of the variable can beangedby an assignmentequestsuch
as:

02000>b

that setd to octal 2000. These variables are useful to know if the file under examination is an execut-
able orcoreimage file.

ADB reads the header of tlwere imagefile to find the values for these variablel.the second
file specified does not seem to beae file, or if it is missing then the header of teeecutabldile is
used instead.

5. Advanced Usage

It is possible with ADB to combine formatting requesisprovide elaboratedisplays. Below are
several examples.

5.1. Formatted dump
The line:

<b,—1/404°8Cn

prints 4 octal words followed by their ASCII interpretation from the data space of the core image file.
Broken down, the various request pieces mean:

<b The base address of the data segment.
<b,~1 Print from the base address to the end of fike.negative count is used
here and elsewhere to loop indefinitely or until some error condiilan

end of file) is detected.

The format4o4"8Cn is broken down as follows:

40 Print 4 octal locations.
4 Backup the current address 4 locations (to the original start of the field).
8C Print 8 consecutivecharacterausing an escape convention; each character

in the range 0 to 037 is printed @ followed by the correspondingchar-
acter in the range 0140 to 017An @ is printed as@ @.

n Print a newline.

-10 -

The request:
<b,<d/404°8Cn

could have been used instead to allow the printing to stop at thefehd datasegment(<d provides
the data segment size in bytes).

The formatting requests can be combined with ADB'’s ability to read in a sonpbducea core
image dump script. ADB is invoked as:

adb a.out core < dump
to read in a script filedump,of requests.An example of such a script is:

120%w

4095%s

v

=3n

$m

=3n"C Stack Backtrace"
$C

=3n"C External Variables"
$e

=3n"Registers’

$r

0%s

=3n"Data Segment"
<b,—1/8ona

The requesi20$w setsthe width of the output to 120 characters (normally, the width is 80 char-
acters). ADB attempts to print addresses as:

symbol + offset

The requesti095$s increases the maximum permissible offset to the nearest symbolic address from 255
(default) to 4095.The request canbe usedto print literal strings. Thus, headings are provided in this
dumpprogram with requests of the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the litstehg. The requestbv prints all non-zero ADB variables
(see Figure 8).The requesD$s sets the maximum offset for symbol matches to zero thus suppressing
the printing of symboliclabelsin favor of octal values.Note that this is only done for the printing of
the data segmenitThe request:

<b,—1/8ona

prints a dump from the base of the data segment to the end of file with aadubedgield and eight
octal numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump
As another illustration (Figure 12) consider a set of requestkimp the contentsof a directory
(which is made up of an integgrumberfollowed by a 14 character name):

adb dir —
=n8t"Inum"8t"Name"
0,—1? u8tl4cn

In this example, thel prints theinumberas an unsigned decimal integer, Btemeans that ADB will
space to the next multiple of 8 on the output line, andldlegorints the 14 character file name.

-11 -

5.3. llist Dump

Similarly the contents of thiist of a file system, (e.g. /dev/src, on UNIX systems distributed by
the UNIX Support Group; see UNIX Programmer’'s Manual Section V) cbaldumpedwith the fol-
lowing set of requests:

adb /dev/src —

02000>b

?m <b
<b,—1?"flags'8ton"links,uid,gid"8t3bn",size"8tbrdn"addr"8t8un"times'8t2Y 2na

In this examplethe value of the base for the map was changed to 02000 (by s&wirtp) since that is
the start of arilist within a file system.An artifice (brd above) was used to print the 24 bit size field as
a byte, a space,and a decimalinteger. The last access time and last modify time are printed with the
2Y operator. Figure 12 shows portions of these requests as applied to a directory and file system.

5.4. Converting values
ADB may be used to convert values from one representation to anéibeexample:

072 = odx
will print
072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (oEke)format is remembered
so that typing subsequent numbers will print them in the given forn@hsracter values maye con-
verted similarly, for example:

'a =co
prints
a 0141

It may also be used to evaluate expressions but be warned that all dyeaayorshave the samepre-
cedence which is lower than that for unary operators.

6. Patching

Patchingfiles with ADB is accomplished with therite, w or W, request (which is not like thed
editor write command).This is often used in conjunction with thecate,l or L request. In general, the
request syntax forandw are similar as follows:

?l value

The request is usedto match on two byted, is used for four bytesThe requestv is used to write
two bytes,whereaswW writes four bytes.The value field in eitherlocate or write requests is an expres-
sion. Therefore, decimal and octal numbers, or character strings are supported.

In order to modify a file, ADB must be called as:
adb —w filel file2

When called with this optiorfjlel and file2 are created if necessary and opened for both reading and
writing.
For example, consider the C program shown in Figure WM& can change the wortThis" to
"The" in the executable file for this prograex7, by using the following requests:
adb —w ex7 -
?21'Th
?W 'The’

The request?| starts at dot and stops at the first matcHTdf" having set dot to the addres®of the

-12 -

location found. Note the use of to write to thea.outfile. Theform ?* would have been used for a
411 file.

More frequently the request will be typed as:
?1'Th’; ?s
and locates the first occurrence"@h" and print the entirestring. Executionof this ADB requestwill
set dot to the address of thEh" characters.
As anotherexampleof the utility of the patching facility, consider a C program that has an inter-
nal logic flag. The flag could be set by the user through ADB and the programRaomnexample:

adb a.out —
:sargl arg2
flagiw 1

:C

The :s request is normally used to single step through a process or start a process in single step mode.
In this case it starta.outas a subprocess with argumeatgl andarg2. If there is a subprocess run-

ning ADB writes to it rather than to the file so therequest causeffag to be changed in the memory

of the subprocess.

7. Anomalies
Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the Craatuee. Putting breakpointsat
the entry point to routines means that the function appears not to have been called when the break-
point occurs.

2. When printing addresses, ADB uses either textlata symbolsfrom the a.out file. This some-
times causes unexpected symbol namebetprinted with data (e.g. savr5+023. This does not
happen if? is used for text (instructions) ardor data.

3. ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements

The authors are grateful for the thoughtful comments on teomrganizethis documentfrom R.
B. Brandt, E. N. Pinson and B. A. TaguB. M. Ritchie madethe systemchangesecessaryo accom-
modate tracing within ADB. He also participated in discussions during the writiddpBf His earlier
work with DB and CDB led to many of the features found in ADB.

9

1 D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” CACM, July, 1974.
2. B. W. Kernighan and D. M. Ritchi§he C Programming LanguagBrentice-Hall, 1978.

3 K. Thompson and D. M. Ritchie, UNIX Programmer’'s Manual - 7th Edition, 1978.

4 B. W. Kernighan and P. J. Plaug&gftware ToolsAddison-Wesley, 1976.

13-

Figure 1. C program with pointer bug

struct buf{
int fildes;
int nleft;
char *nextp;
char buff[512];
}bb;

struct buf *obuf;

char *charp'this is a sentence.";

main(argc,argv)
int argc;

char **argv;

{

char CC;

if(argc < 2) {
printf("Input file missing\n");
exit(8);

}

if((fcreat(argv[1],o0buf))< 0){
printf("%s : not found\n"argv[1]);
exit(8);

}

charp ='T;

printf("debug 1 %s\n",charp);

while(cc= *charp++)
putc(cc,obuf);

fflush(obuf);

Figure 2. ADB output for C program of Figure 1

adb a.out core
$c
"main(02,0177762)
$C
"main(02,0177762)
argc: 02
argv: 0177762
cc: 02124
$r
ps 0170010
pc 0204 "main+0152
sp 0177740
r5 0177752
r4 01
r3 0
r2 0
rl 0
r0 0124
“main+0152:
$e
savrs: 0
_obuf: 0
_charp: 0124
_ermo: 0
_fout: 0
$m
text map ‘exl’
bl=0 el
b2 =0 e2
data map ‘“corel’
bl=0 el
b2 = 0175400 e2
*charpl/s

mov _obuf,(sp)

= 02360
= 02360

= 03500
= 0200000

- 14 -

f1 = 020
f2 =020

f1 = 02000
f2 = 05500

0124

charp/s

_charp: T
_charp+02: this is a sentence.
_charp+026:
main.argc/d
0177756: 2
*main.argv/30
01777620177770 0177776 0177777
0177770/s

0177770: a.out

*main.argv/30

01777620177770 0177776 0177777
*'/s

0177770: a.out

=0

Input file missing

0177770
.—10/d
0177756: 2

$q

TTTTTTTTTrrrrTTrrTTrrr T T T T T T T TTTTTTTTTLX

Nh@x&_

-15 -

Figure 3: Multiple function C program for stack trace illustration

int
h(x,y)
{

}

9(p.a)
{

f(a,b)

main()

fent,gent,hent;

int hi; register int hr;
hi = x+1;

hr = x-y+1;

hent++ ;

hj:

f(hr,hi);

int gi; register int gr;
gi = gp;

gr = qp+l;

gent++

gi:

h(gr.gi);

int fi; register int fr;
fi = a+2*b;

fr = a+b;

fent++ ;

fj:
g(fr.fi);

f(1,1);

Figure 4: ADB output for C program of Figure 3

adb

$c
"h(04452,04451)
"g(04453,011124)
“f(02,04451)
“h(04450,04447)
"g(04451,011120)
“f(02,04447)
"h(04446,04445)
"g(04447,011114)
“f(02,04445)
“h(04444,04443)
HIT DEL KEY
adb

,5$C
"h(04452,04451)

X:

y:
hi:
"g(04453,011124)

p:

“

gi:

gr:
“f(02,04451)

a

b:

fi:

fr:
"h(04450,04447)

X:

y:
hi:

hr:
"g(04451,011120)

p:

o

gi:

ar:
fent/d
_fent:
gent/d
_gent:
hent/d
_hent:

h.x/d
022004

$q

04452
04451

04453
011124

04451
?

02
04451
011124
04453

04450
04447
04451
02
04451
011120
04447
04450
1173
1173
1172

2346

- 16 -

Figure 5. C program to decode tabs

#define MAXLINESO

- 17 -

/*Set initial tab stops */

printf("%s : not found\n",input);

/* TAB */
while(tabpos(col) != YES]
putchar(');
col++ ;

/* put BLANK */

}

break;
*NEWLINE */
putchar(\n");
col = 1;
break;

putchar(c);
col++ ;

#define YES 1
#define NO 0
#define TABSP 8
char input[]"data";
char ibuf[518];
int tabs[MAXLINE];
main()
{
int col, *ptab;
char c;
ptab = tabs;
settab(ptab);
col =1;
if(fopen(input,ibuf)< 0) {
exit(8);
}
while((c = getc(ibuf)) '=-1) {
switch(c){
case'\t”:
case'\n":
default:
}
}
}
/* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;
{
if(col > MAXLINE)
return(YES);
else
return(tabs[col]);
}
[* Settab - Set initial tab stops */
settab(tabp)
int *tabp;
{ . .
int i;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs[i] = NO) : (tabs[i] = YES);

-18 -

Figure 6a: ADB output for C program of Figure 5

adb a.out -
settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b
$b
breakpoints
count bkpt command
1 “tabpos+04
1 _getc+04
1 _fopen+04
1 “settab+04
settab,5%ia
“settab: jsr r5,csv
“settab+04: tst -(sp)
“settab+06: clr 0177770(r5)
“settab+012: cmp $0120,0177770(r5)
“settab+020: bt “settab+076
“settab+022:
settab,57i
“settab: jsr r5,csv
tst —(sp)
clr 0177770(r5)
cmp $0120,0177770(r5)
bit “settab+076
r
a.out: running
breakpoint “settab+04: tst —(sp)
settab+4:d
C
a.out: running
breakpoint _fopen+04: mov 04(r5),nulstr+012
$C
_fopen(02302,02472)
"main(01,0177770)
col: 01
c: 0
ptab: 03500
tabs,3/80
03500: 01 0 0 0 0
01 0 0 0 0
01 0 0 0 0

o o

o o

o o

-19 -

Figure 6b: ADB output for C program of Figure 5

C

a.out: running

breakpoint _getc+04: mov 04(r5),r1
ibuf+6/20c

__cleanu+0202: This is atest of
C

a.out: running

breakpoint “tabpos+04: cmp $0120,04(r5)
tabpos+4:d

settab+4:b settab,5%ia

settab+4:b settab,5%ia; 0

getc+4,3:b main.c?C; 0

settab+4:b settab,5%ia; ptab/o; O

$b

breakpoints

count bkpt command

1 “tabpos+04

3 _getc+04 main.c?C;0

1 _fopen+04

1 “settab+04 settab,5%ia;ptab?0;0
“settab: jsr r5,csv
“settab+04: bpt

“settab+06: clr 0177770(r5)
“settab+012: cmp $0120,0177770(r5)
“settab+020: blt “settab+076
“settab+022:

0177766: 0177770

0177744.@"

T0177744: T

h0177744: h

i0177744: i

s0177744. S

-20 -

Figure 7: ADB output for C program with breakpoints

adb ex3 -

h+4:b hent/d; h.hi/; h.hr/
g+4:b gent/d; g.gi/; g.gr/
f+4:b fent/d; ffil; f.fr/

ir

ex3: running

_fent: 0

0177732: 214

symbol not found

f+4:b fent/d; f.a/; f.b/; f.fi/
g+4:b gent/d; g.p/; 9.9/; 9.gi/
h+4:b hent/d; h.x/; h.y/; h.hi/
‘c

ex3: running

_fent: 0
0177746: 1
0177750: 1
0177732: 214
_gent: 0
0177726: 2
0177730: 3
0177712: 214

_hent: 0

0177706: 2

0177710: 1

0177672: 214

_fent: 1

0177666: 2

0177670: 3

0177652: 214

_gent: 1

0177646: 5

0177650: 8

0177632: 214

HIT DEL

f+4:b fent/d; f.a/"a ="d; f.b/"b
g+4:b gent/d; g.p/'p = "d; g.9/"
h+4:b hent/d; hx/"x = "d; h.y/"
ir

ex3: running
_fent:
0177746:
0177750:
0177732:
_gent:
0177726:
0177730:
0177712:
_hent:
0177706:
0177710:
0177672:
_fent:
0177666:
0177670:
0177652:
HIT DEL

$q

"d; f.fi/fi

i
g.0i
h.

I"gi
i/"h

TR

="d; f.fi/"fi
q="d; gg d
h ="d; h.hi/"hi ="d

NP P
[
~

o W N
=
N

QLT o=T YO

TO I X
([T}

Il
NN

[y

SN

o n
NwN

=
=
N

-21 -

Figure 8: ADB address maps

407 files
a.out hdr text+data
O O O
0 D
core hdr text+data stack
O o 0
0 D S

410 files (shared text)

a.out hdr text data

core hdr data stack

411 files (separated | and D space)

a.out hdr text data
O O 0

0 T O

core hdr data stack

The following adb variables are set.

407 410 411
b base of data 0 B 0
d length of data D D-B D
S length of stack S S S
t length of text 0 T T

- 22 -

Figure 9: ADB output for maps

adb map407 cored07

$m

text map “map407’

bl=0 el = 0256 fl = 020
b2=0 e2 = 0256 f2 = 020
data map ‘core407’

bl1=0 el = 0300 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02300
$v

variables

d = 0300

m = 0407

s = 02400

$q

adb map410 core410

$m

text map “map410”

bl=0 el = 0200 fl =020
b2 = 020000 e2 = 020116 f2 = 0220
data map ‘core410’

b1l = 020000 el = 020200 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200
$v

variables

b = 020000

d = 0200

m = 0410

s = 02400

t = 0200

$q

adb map411 core4ll

$m

text map “map41l’

bl=0 el = 0200 fl = 020
b2=0 e2 = 0116 f2 = 0220
data map ‘core41l’

bl=0 el = 0200 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200

$v

variables

d = 0200

m = 0411

s = 02400

t = 0200

$q

-23-

Figure 10: Simple C program for illustrating formatting and patching

char
int

int
long
float
char
main()

{
}

strif] "This is a character string";

one 1;
number 456;
Inum 1234;
fpt 1.25;

str2[] "This is the second character string";

one = 2;

- 24 -

Figure 11: ADB output illustrating fancy formats

adb map410 core410
<b,-1/8ona
020000: 0 064124 071551 064440 020163 020141 064143

_str1+016: 061541 062564 020162 072163 064562 063556 0 02

_number:
_number: 0710 0 02322 040240 0 064124 071551 064440

_str2+06: 020163 064164 020145 062563 067543 062156 061440
_str2+026: 060562 072143 071145 071440 071164 067151 0147 0
savr5+02: 0 0 0 0 0 0 0 0

<b,20/404°8Cn

020000: 0 064124 071551 064440 @ @ Thisi
020163 020141 064143 071141 ashar
061541 062564 020162 072163 aaer
064562 063556 0 02 ring@ @ @b@"

_number: 0710 0 02322 040240 H@a@ @ RO@@
0 064124 071551 064440 @ @ Thisi
020163 064164 020145 062563 these
067543 062156 061440 060550 carith
060562 072143 071145 071440 racer
071164 067151 014D tring@ @ @
0 0 0 0 Q@@ @@
0 0 0 0 EeEEE@@@@@

data address not found

<b,20/404"8t8cna

020000: 0 064124 071551 064440 Thisi
_str1+06: 020163 020141 064143 071141 sachar
_str1+016: 061541 062564 020162 072163 acterst
_str1+026: 064562 063556 0 02 ring

__number:

_number: 07100 02322 040240 HR

_fpt+02: O 064124 071551 064440 Thisi
_str2+06: 020163 064164 020145 062563 sthese
_str2+016: 067543 062156 061440 060550 condcha
_str2+026: 060562 072143 071145 071440 racters
_str2+036: 071164 067151 0147 0 tring

savr5+02: 0 0 0 0
savr5+012:0 0 0 0
data address not found
<b,10/2b8t™2cn

020000: 0 O

_strl: 01240150 Th
0151 0163 is
040 0151 i
0163 040 s
0141 040 a

0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 te

$Q

071141

060550

-25.

Figure 12: Directory and inode dumps

adb dir -
=nt"Inode't"Name"
0,—1?utl4cn
Inode Name
0: 652 .
82 .
5971 cap.c
5323 cap
0 pp
adb /dev/src -
02000>b
?m<b
new map “/devl/src’
bl = 02000 el = 0100000000 f1=0
b2=0 e2 =0 f2=0
v
variables
b = 02000
<b,—-1?"flags'8ton"links,uid,gid"8t3bn"size"8tbrdn"addr"8t8un"times'8t2Y 2na
02000: flags073145
links,uid,gid 0163 0164 0141
size 016210356
addr 28770 823625956 27766 25455 82385956
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15
02040: flags 024555
links,uid,gid 012 0163 0164
size 016225461
addr 8308 30050 829425130 15216 26890 29806
times 1976 Aug 17 12:16:511976 Aug 17 12:16:51
02100: flags05173

links,uid,gid 011 0162 0145
size 014729545

addr 25972 830628265 830825642 15216 23145970

times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

ADB Summary

Command Summary

a) formattedprinting

? format
/ format
= format

2w expr
Iw expr

2l expr

print from a.outfile according tdformat
print from core file according toformat

print the value oflot

write expression int@a.outfile
write expression intaore file

locate expression ia.outfile

b) breakpoint and program control

222gLe e v=xa060c

$r

$s
$v
Sw

set breakpoint adot

continue running program
delete breakpoint

kill the program being debugged
run a.outfile under ADB control
single step

miscellaneougrinting

print current breakpoints

C stack trace

external variables

floating registers

print ADB segment maps
exit from ADB

general registers

set offset for symbol match
print ADB variables

set output line width

d) calling the shell

call shellto read rest of line

e) assignment to variables

>name

assign dot to variable or registeame

Format Summary

w - S0 T T O TYD

2
=3

Y X C

the value of dot

one byte in octal

one byte as a character

one word in decimal

two words in floating point
PDP 11 instruction

one word in octal

print a newline

print a blank space

a null terminated character string
move to nexin space tab

one word as unsigned integer
hexadecimal

date

backup dot

print string

Expression Summary

a) expression components

decimal integer e.g. 256

octal integer e.g. 0277
hexadecimal e.g. #ff

symbols e.g. flag _main main.argc
variables e.g.<b

registers e.g.<pc <r0
(expression) expression grouping
b) dyadic operators

+ add

- subtract

* multiply

% integer division

& bitwise and

O bitwise or

round up to the next multiple

¢) monadic operators

*

not
contents of location
integer negate

